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. Proteus: programmable C/C++ for )
@) JIT compilation and optimization Olympus-HPC

/&, Mneme: advanced scalable A

/. autotuning using Proteus

 We’ll show how to install and use Proteus, dive into its internals, and
highlight compelling performance results 37

 We'll introduce Mneme, walk through its installation and usage, and
explore examples of extreme autotuning in action / %

- Questions are welcome throughout: jump in anytime! (= ¢
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The Proteus Project &

» https://github.com/Olympus-HPC/proteus

= Project goal

Research and develop programmable JIT
compilation and optimization to maximize
the performance of HPC codes

easy-to-integrate state-of-the-art
easy-to-use
high-performance scalable
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. B

We develop Proteus open-source

= Support @Z n

nvipiA. AMD

— RDC/non-RDC compilation = Actively Developed
— Device libraries — https://github.com/Olympus-HPC/proteus

* (both Proteus and non-Proteus compiled)

= Documentation
— https://olympus-hpc.github.io/proteus/

docs (gh-pages) [passing Build and test [passing [ license Apache 2.0 with LLVM exceptions

= Continuous integration testing Decamber 31, 2025 - January 31,2026
— GitHub and GPU-enabled GitLab Cl
— LLVM 18/19/20 y—
— CUDA 12.2 o a 04 on
 ROCM 621, 6.3.1, 6.4.1,7.1.0 o s

Summary Top Committers e @3

Excluding merges, 7 authors have pushed 11 commits to 20
main and 47 commits to all branches. 2

E

0
On main, 246 files have changed and there have been 5 !
2,492 additions and 767 deletions o I I I -
LAEBEEFNET
Lawrence Livermore 4
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What we do now to get high performance from our

HPC software has limitations

: . = Write ugly, compile-time value specializations
= Static ahead-of-time (AOT) &.g j’ - p/ P

optimizing compilation ovee MR v o (1 oy - 910

Raw |'_|
1198 void QKernel(const int NE, const int NQ,
1307 const int id = (dim << 4) | Q1D;
1308 typedef void (xfQKernel)(const int NE, const int NQ,
1309 const bool use_viscosity,
1310 const bool use_vorticity,
Sou rce 1311 const double h@, const double hlorder,
1312 const double cfl, const double infinity,
03 1313 const ParGridFunction &gamma_gf,
I 1314 const Array<double> &weights,
EEE—— Compile 1315 const Vector &Jacobians, const Vector &rho@DetJow,
—— 1316 const Vector &e_quads, const Vector &grad_v_ext,
— 1317 const DenseTensor &Jac@inv,
— <,> 1318 Vector &dt_est, DenseTensor &stressJinvT);
—— 1319 static std::unordered_map<int, fQKernel> qupdate =
1320 {
1321 // 2D.
1322 {0x24,&QKernel<2,4>}, {0x26,&QKernel<2,6>},
1323 {0x28,&QKernel<2,8>}, {0x2A,&QKernel<2,10>},
1324 // 3D.
1325 {0x34,&QKernel<3,4>}, {0x36,&QKernel<3,6>}, {0x38,&QKernel<3,8>}
1326 HH
1327 if (!qupdate[id])
1328 {
1329 mfem: :out << "Unknown kernel 0x" << std::hex << id << std::endl;
1330 MFEM_ABORT ("Unknown kernel");
1331 }
1332 qupdate[id] (NE, NQ, use_viscosity, use_vorticity, gqdata.h®, hlorder,
Lawrence Livermore

National Laboratory ~ LLNL-PRES-2015399 5



The Just-in-Time (JIT) compilation landscape: it’s
hard for statically compiled languages

~=_ Source :

Java

Lawrence Livermore
National Laboratory

S O O O O O O . . . S S . e . .

(bytecode) |

\ Compiler )

“Thin”

Runtime

4 Interpreter

+

Compile time

/

AN

Compiler
(static opt.)

JIT compiler

K(dyna mic opt.)

* Challenges forJIT in

Runtime C/C++/Fortran

=

/

LLNL-PRES-2015399

* Introspection is hard for
statically compiled lang.

* Hard to beat static
compilation optimization

e QOverhead



EasylJIT

C++ functors

=0

{ &

)
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ClangJIT

C++ templates

o

Prlorworklsmsplrggjonal but obsolete non-portable, slow

o
CUDA/HIP RTC
(CUDA Jitify)

< ¢l

nvipia. AMD
CUDA/HIP only




Workflow: developer uses the Proteus API, compiles,
runs with JIT compilation and optimization enabled

Compile time

* APIs
* Code annotations (Annotation)
. e C++ Frontend (PJ-CPP)
libproteus * Embedded Domain Specific Language (PJ-DSL)

JIT compiles & * Optimization at runtime

Lawrence Livermore
National Laboratory

optimizes * Runtime constexpr

e Template instantiations

* GPU launch parameters

e Customize compiler pipeline per kernel

-
nvioiaA. AMD

LLNL-PRES-2015399



.

Proteus’ central optimization
IS runtime constant folding

r=0

* Runtime Constant Folding oy <t 14
e Scalars, arrays, objects }elser+=-'0810(x):
* APl dependent
* GPU launch parameters: number of threads, c =True
blocks @ N }
* Eliminate computation, unroll loops, inlining, ik

algebraic transformations, ...

for(l 0; i<N; ++|)/ /
r+=1log10(x); §\> r=10

}

Lawrence Livermore
National Laboratory LLNL-PRES-2015399 9
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. .

Overview

1.Proteus JIT APIs
1. Annotation
2.PJ-CPP
3.PJ-DSL

2.Building Proteus
3.Proteus JIT Internals
4.Proteus JIT Performance

Lawrence Livermore 12
National Laboratory LLNL-PRES-2015399



The Code Annotation APl is
easy to apply to existing code

JIT Opportunities:

void stencilld(float* out, float* in, size_t N,

int radius, float* weights)

int gid = getGlobalThreadIdX();
int tid = getThreadIdX();

extern __shared__ float tile[];

tile[tid + radius] = in[gid];
if (tid < radius) {
tile[tid] = in[gid - radius];
tile[tid + blockDim.x + radius] = in[gid + blockDim.x];
}
__syncthreads();

float sum = 0.0f;

for (int j = -radius; j <= radius; j++)
sum += tile[tid + radius + j] * weights[radius + j];
out[gid] = sum;

Lawrence Livermore
National Laboratory

LLNL-PRES-2015399
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The Code Annotation APl is

easy to apply to existing code

JIT Opportunities:
N, radius are runtime constants

Input

void stencilld(float* out, float* in,

{

int radius,] float* weights)

extern __shared__ float tile[];

int gid = getGlobalThreadIdX();
int tid = getThreadIdX();

tile[tid + radius] = in[gid];
if (tid < radius) {
tile[tid] = in[gid - radius];
tile[tid + blockDim.x + radius] = in[gid + blockDim.x];

}

__syncthreads();

float sum = 0.0f;
for (int j = -radius; j <= radius; j++)

sum += tile[tid + radius + j] * weights[radius + j];
out[gid] = sum;

Lawrence Livermore
National Laboratory LLNL-PRES-2015399
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The Code Annotation APl is

easy to apply to existing code

JIT Opportunities:

N, radius are runtime constants

weights is constant

Input

void stencilld(float* out, float* in,
int radius,ifloat* weights)

{

extern __shared__ float tile[];

int gid = getGlobalThreadIdX();
int tid = getThreadIdX();

tile[tid + radius] = in[gid];
if (tid < radius) {
tile[tid] = in[gid - radius];
tile[tid + blockDim.x + radius] = in[gid + blockDim.x];

}
__syncthreads();

float sum = 0.0f;
for (int j = -radius; j <= radius; j++)

sum += tile[tid + radius + j] * weights[radius + j];
out[gid] = sum;

Lawrence Livermore
National Laboratory LLNL-PRES-2015399
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The Code Annotation APl is
easy to apply to existing code

JIT Opportunities:

N, radius are runtime constants
weights is constant

Tile is dynamic shared memory

Input

&/Q

X

X

void stencilld(float* out, float* in,
int radius,ifloat* weights)

{

extern __shared__ float tile[];

int gid = getGIoEaI|HreaHIaRZi;

int tid = getThreadIdX();

tile[tid + radius] = in[gid];
if (tid < radius) {
tile[tid] = in[gid - radius];
tile[tid + blockDim.x + radius] = in[gid + blockDim.x];

}
__syncthreads();

float sum = 0.0f;
for (int j = -radius; j <= radius; j++)

sum += tile[tid + radius + j] * weights[radius + j];
out[gid] = sum;

Lawrence Livermore
National Laboratory LLNL-PRES-2015399
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The Code Annotation APl is
easy to apply to existing code

__attribute__((annotate(“jit”, 1, ..., N)))

Argument index
f——

__attribute__((annotate("jit", 3, 4)))l // N, radius

—-global_ .
void stencilld(float* out, float* in, size_t N,
int radius, [float* weightsl

int gid = getGIoEaI|HreaHIaRZi;

int tid = getThreadIdX();

extern __shared__ float tile[];

tile[tid + radius] = in[gid];
if (tid < radius) {
tile[tid] = in[gid - radius];

tile[tid + blockDim.x + radius] = in[gid + blockDim

}
__syncthreads();

float sum = 0.0f;
for (int j = -radius; j <= radius; j++)

Xl

sum += tile[tid + radius + j] * weights[radius + j];

out[gid] sum;

Lawrence Livermore
National Laboratory LLNL-PRES-2015399
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The Code Annotation APl can
JIT-compile constant arrays
__attribute__((annotate("jit", 3, 4)))] —_global__

__attribute__((annotate(“jit”, 1, ..., N))) void stencilld(float *out, float *in, size_t N,
int radius,lfloat *weightsp {

proteus::jit_array(weights, NWeights);

extern __shared__ float tilel];

int gid = getGlobalThreadIdX();

int tid = getThreadIdX();

proteus::jit_array

tile[tid + radius] = in[gid];
if (tid < radius) {

tile[tid] = in[gid - radius];

tile[tid + blockDim.x + radius] = in[gid + blockDim.x];
}

__syncthreads();

float sum = 0.0f;
for (int j = -radius; j <= radius; j++)

sum += tile[tid + radius + j] * weights[radius + j];
out[gid] = sum;

Lawrence Livermore 1
National Laboratory LLNL-PRES-2015399 8



The Code Annotation APl converts
dynamic shared memory to static

__attribute__((annotate("jit", 3, 4)))l__global__
__attribute__((annotate(“jit”, 1, ..., N))) void stencilld(float *out, float *in, size_t N,

int radius, float *weights, int SMSize) {
proteus::jit_array(weights, NWeights);
float *tile = proteus::shared_array<float, 10>(SMSize);
int gid = getGlobalThreadIdX();
int tid = getThreadIdX();

proteus::jit_array

proteus::shared_array

tile[tid + radius] = in[gid];
if (tid < radius) {

tile[tid] = in[gid - radius];

tile[tid + blockDim.x + radius] = in[gid + blockDim.x];
}

__syncthreads();

float sum = 6.0f;
for (int j = -radius; j <= radius; j++)

sum += tile[tid + radius + j] * weights[radius + j];
out[gid] = sum;

Lawrence Livermore 1
National Laboratory LLNL-PRES-2015399 9



Launch Bound, Dimension Specialization
expose additional optimization opportunities

|__attribute__((annotate("jit", 3, 4)))l__global__
__attribute_ ((annotate(“jit”, 1, ..., N))) void stencilld(float *out, float *in, size_t N,
int radius, float *weights, int SMSize) {

proteus::jit_array In[)ut proteus::jit_array(weights, NWeights);
float *tile = proteus::shared_array<float, 1@>(SMSize)'
proteus::shared_array qgs int gid = range(@, 32768) getGlobalIdx();
gsg int tid = range(@, 128) getThreadIdx();
tile[tid + radius] = in[gid];
if (tid < radius) {
tile[tid] = in[gid - radius];
tile[tid + (128])+ radius] = in[gid +(12§)];
Sl i P }
Qutput ' | L
L---- L---- __syncthreads();

float sum = 0.0T;
for (int j = -radius; j <= radius; j++)

sum += tile[tid + radius + j] * weights[radius + j];
out[gid] = sum;

Lawrence Livermore 5
National Laboratory LLNL-PRES-2015399 0



The Annotation APl applies to lambda functions

auto Kernel =
__attribute__((annotate(“jit”, 1, ..., N))) [=,»rad%us proteus::j?t_var?able(rédiu§), | ‘
tileSize = proteus::jit_variable(tileSize)])__device__(float *weights)
__attribute__((annotate("jit"))) {

proteus::jit_array(weights, NWeights);

float *tile = proteus::shared_array<float, MaxTileSize>(tileSize);

int gid = getGlobalThreadIdX();

int tid = getThreadIdX();

proteus::jit_array
proteus::shared_array

proteus:register lambda
tile[tid + radius] = in[gid];
if (tid < radius) {

tile[tid] = in[gid - radius];

tile[tid + blockDim.x + radius] = in[gid + blockDim.x];
b3

__syncthreads();

float sum = 0.06f;

for (int j = -radius; j <= radius; j++)
sum += tile[tid + radius + j] * weights[radius + j];

out[gid] = sum;

}

Lawrence Livermore 21
National Laboratory LLNL-PRES-2015399



. B

The C++ Frontend is a portable RTC
Implementation that supports specialization

double A = ...
int N = ...
[ std::string Code = std::format(R"cpp(
extern "C" extern "C" __global__
__global__ void daxpy(double *X, double *Y)
void daxpy(double *X, double *Y) {
Code with {{ F ; int tid = threadIdx.x + (blockIdx.x * blockDim.x);
T e int tid = threadIdx.x + (blockIdx.x * blockDim.x); orma int stride = blockDim.x * gridDim.x:
speCIallzatlon int stride = blockDim.x * gridDim.x; —_— for(int i=tid; i < 2048; iS=stride)
for(int i=tid; i<{@}; i+=stride) X[i] = @.5*X[i] + Y[i]:
X[1] = {1}*X[] + Y[i]; )
Create Jit Module Y epp”, N, A);

CppJitModule CJM{"cuda"”, Code};
auto Kernel = CJM.getKernel<void(double *, double *)>("daxpy");

Get Kernel handle
(WI'.'. compile) Kernel.launch(
/* GridDim */ {NumBlocks, 1, 1},
/* BlockDim */ {ThreadsPerBlock, 1, 1},
Launch! /* ShmemSize */ O,

/* Stream */ nullptr,
X, Y);

Lawrence Livermore o9
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C++ Frontend enables
runtime template instantiation

std::string Code = R"cpp(
template<typename T, int N>
__global__ void axpy(double A, T *X, T *Y) {
1}3r71r)liit(3(j size_t I = blockIdx.x * 256 + threadIdx.x;
. if (I < N)
code Y[I] += X[I] * A:
}
yepp”;

constexpr int N = 10824;
constexpr int NumThreadsPerBlock = 256;
constexpr int NumBlocks = (N + NumThreadsPerBlock - 1) / NumThreadsPerBlock;

CppJitModule CJM{"hip", Code}; Type
. Value
float *X_f, *Y_f; FunCtlon 1 /
— quto AxpyFloat = CJM.instantiate("axpy", "float", std::to_string(N));
l]iir1(jl€3 AxpyFloat.launch({NumBlocks, 1, 1}, {NumThreadsPerBlock, 1, 1}, 0, nullptr,
H H 1.0, X_f, Y_T);
(will compile) )

Get instance

double *X_d, *Y_d;

auto AxpyDouble = CJM.instantiate("axpy", "double", std::to_string(N));
AxpyDouble.launch({NumBlocks, 1, 1}, {NumThreadsPerBlock, 1, 1}, 8, nullptr,
1.8, X_d, Y_d);

Lawrence Livermore 5
National Laboratory LLNL-PRES-2015399 3



. B

C++ Frontend is string templating engine agnostic

Std : : fo rmat ( ) std::string Code =R"cpp( __global__

extern "C" void stencilld(float *out, float *in, float *weights, int tileSize) {
extern __shared__ float tile[];
int tid threadIdx.x;
blockIdx.x * blockDim.x + tid;

int gid
- Jlnju tile[tid +|{{ radius }}]] = in[gid];
if (tid < {{ radius }})) {
Ifm*l tile[tid] = in[gid - [{{ radius }}]I;
tile[tid + blockDim.x + H{ radius }H] = in[gid + blockDim.x];

'
__syncthreads();

mustache
float sum = 0.0f;
#pragma unroll
for (int j = —k{ radius }H; j <= k{ radius }j; ++3)
sum += tile[tid + K{ radius }H + j] * weightsﬂ{{ radius }}]+ il;
out[gid] = sum;

}
)epp”;

Lawrence Livermore o4
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. B

The C++ frontend supports
the full suite of specialization

std::string Code = R"cpp(__global__
extern "C" void stencilld_cpp(float *out, float *in) {
const float weights[] = H{ weights }ﬂ;
__shared__ float tile[ﬁ{ tileSize }ﬂ];
int tid threadIdx.x;
int gid blockIdx.x * H{ blockSize }H + tid;

tile[tid + H{ radius }ﬂ] = in[gid];
if (tid < H{ radius }}p {
tile[tid] = in[gid - [{{ radius }ﬂ];
tile[tid + H{ blockSize }H +[{{ radius }}H = in[gid + H{ blockSize }]];
}
__syncthreads();

float sum = 0.06°T;
#pragma unroll
for (int j = -{{ radius }}} j <= [{{ radius }}} ++j)
sum += tile[tid + H{ radius }}]+ jl * weights[ﬁ{ radius }}]+ jl;
out[gid] = sum;
h
)cpp”;

Lawrence Livermore 5
National Laboratory LLNL-PRES-2015399 S




PJ-DSL constructs LLVM IR at runtime

auto createJitKernel(double _A, size_t _N) { ; ModuleID = 'JitModule'
auto J = std::make_unique<JitModule>(TARGET); Seuree il = "JAdiells
target triple = "amdgcn-amd-amdhsa”

return std::make_pair(std::move(J), KernelHandle);

Lawrence Livermore 5
National Laboratory LLNL-PRES-2015399 6



Kernels are added to JitModules with
their name and signature

auto createJitKernel(double _A, size_t _N) { ; ModuleID = 'JitModule'
auto J = std::make_unique<JitModule>(TARGET); Seuree-illleirms = "kl
target triple = "amdgcn-amd-amdhsa”
auto KernelHandle = J->addKernel<void(double *, double *)>("daxpy"); define amdgpu_kernel void @daxpy(ptr %8, ptr %1) {
auto &F = KernelHandle.F; entry:

return std::make_pair(std::move(J), KernelHandle);

Lawrence Livermore o7
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PJ-DSL uses paired constructs for control structures

auto createJitKernel(double _A, size_t _N) { i ModuleID = 'JitModule' F beglnIf(Cond) .
auto J = std::make_unique<JitModule>(TARGET); :Ourci-:i}e;ame = ”jltMOd“;e" e ( ! )
Sree e m A F.beginFor(Iter, Init, UB, Inc);
i ] ! ! !’
auto KernelHandle = J->addKernel<void(double *, double *)>("daxpy"); define amdgpu_kernel void @daxpy(ptr %8, ptr %1) {

auto &F = KernelHandle.F; SRRy F. beganhlle( [&] ( ) { return A < B , }) )

F.beginFunction(); br label %body
{ body:
br label %exit

}
F.endFunction();
return std::make_pair(std::move(J), KernelHandle); exit:
} unreachable

}

Lawrence Livermore 28
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Typed Var objects wrap LLVM scalar types

auto createJitKernel(double _A, size_t _N) { ; ModuleID = 'JitModule'
auto J = std::make_unique<JitModule>(TARGET); Seuree-illleirms = "kl
target triple = "amdgcn-amd-amdhsa”
auto KernelHandle = J->addKernel<void(double *, double *)>("daxpy"); define amdgpu_kernel void @daxpy(ptr %8, ptr %1) {
auto &F = KernelHandle.F; entry:

%A = alloca double

; Remaining allocas.

br label %body
body:
auto X, Y] _ F.getArgs(); store double 6.0e+00, ptr %A
Var<const double> A = F.defRuntimeConst(_A);

Var<const size_t> N = F.defRuntimeConst(_N);

F.beginFunction(); Var<double*>

br label %exit

Var<size_t> I = F.declVar<size_t>("I");

return std::make_pair(std::move(J), KernelHandle); exit:
} unreachable

}

Lawrence Livermore 5
National Laboratory LLNL-PRES-2015399 9



PJ-DSL provides access to bult-in device functions

auto createJitKernel(double _A, size_t _N) {
auto J = std::make_unique<JitModule>(TARGET) ;

auto KernelHandle = J->addKernel<void(double *, double *)>("daxpy");

auto &F = KernelHandle.F;

F.beginFunction();

{
auto [X, Y] = F.getArgs();
Var<const double> A = F.defRuntimeConst(_A);
Var<const size_t> N = F.defRuntimeConst(_N);

Var<size_t> I = F.declVar<size_t>("I");

I = F.callBuiltin(getBlockIdX) * F.callBuiltin(getBlockDimX) +
F.callBuiltin(getThreadIdX);

return std::make_pair(std::move(J), KernelHandle);

; ModuleID = 'JitModule
source_filename = "JitModule"
target triple = "amdgcn-amd-amdhsa”

Screenshot of other
builtins

define amdgpu_kernel void @daxpy(ptr %0, ptr %1) {
entry:
%A = alloca double
; Remaining allocas.
br label %body
body:
store double 6.0e+00, ptr %A
%12 = call i32 @llvm.amdgcn.workitem.id.x()
store i32 %12, ptr %threadIdx.x, align 4

br label %exit

exit:

unreachable

}

Lawrence Livermore
National Laboratory LLNL-PRES-2015399
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Var objects support arithmetic, math operations

auto createJitKernel(double _A, size_t _N) {
auto J = std::make_unique<JitModule>(TARGET) ;

auto KernelHandle = J->addKernel<void(double *, double *)>("daxpy");

auto &F = KernelHandle.F;

F
{

}

F.

.beginFunction();

auto [X, Y] = F.getArgs();
Var<const double> A = F.defRuntimeConst(_A);
Var<const size_t> N = F.defRuntimeConst(_N);

Var<size_t> I = F.declVar<size_t>("I");

I = F.callBuiltin(getBlockIdX) * F.callBuiltin(getBlockDimX) +
F.callBuiltin(getThreadIdX);

auto [J, Inc, Zero] = F.defvars(e, 1, 0);

F.beginFor(J, Zero, N, Inc);

{ Y[I] = Y[I] + X[I] * A; }

F.endFor();

F.ret();

endFunction();

return std::make_pair(std::move(J), KernelHandle);

Lawrence Livermore
National Laboratory LLNL-PRES-2015399

; ModuleID = 'JitModule
source_filename = "JitModule"
target triple = "amdgcn-amd-amdhsa”

define amdgpu_kernel void @daxpy(ptr %0, ptr %1) {

entry:
%A = alloca double
; Remaining allocas.
br label %body

body:
store double 6.0e+00, ptr %A
%12 = call i32 @llvm.amdgcn.workitem.id.x()
store i32 %12, ptr %threadIdx.x, align 4
; Remaining stores. Set up loop condition
br label %loop.header

loop.header:

br label %loop.cond
loop.cond:

; Calculate J < N

br i1 %23, label %loop.body, label %loop.end
loop.body:

; Compute Y[I] += X[I] * A;

br label %loop.inc
loop.inc:

; J += Computed grid size

br label %loop.cond
loop.end:

br label %body.split
body.split:

ret void
exit:

unreachable

}

g [ g [

.min(A, B);
.pow(X, Y);
.cos(N);
.sin(M);
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PJ-DSL kernels are portable between GPU vendors

auto createJitKernel(double _A, size_t _N) { S-td : :St r-lng TARGET = hlp n .,

}

auto J = std::make_unique<JitModule>(TARGET) ;

auto KernelHandle = J->addKernel<void(double *, double *)>("daxpy"); J. Compile() 5
auto &F = KernelHandle.F;

F.beginFunction(); AMDa

{

auto [X, Y] = F.getArgs();

Var<const double> A = F.defRuntimeConst(_A);

Var<const size_t> N = F.defRuntimeConst(_N);
| | std::string TARGET = "cuda";
Var<size_t> I = F.declVar<size_t>("I");
I = F.callBuiltin(getBlockIdX) * F.callBuiltin(getBlockDimX) +

F.callBuiltin(getThreadIdX); J. Compile( ) ,

auto [J, Inc, Zero] = F.defvars(e, 1, 0);
F.beginFor(J, Zero, N, Inc);

{ Y[I] = Y[I] + X[I] * A; }
F.endFor(); @a
NVIDIA

F.ret();
}

F.endFunction();

return std::make_pair(std::move(J), KernelHandle);

Lawrence Livermore
National Laboratory LLNL-PRES-2015399
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PJ-DSL supports constant, variable arrays

F.beginFunction(); {

auto [Out, In] = F.getArgs();

auto Radius = F.defRuntimeConst<int>(Radius_);

auto Weights = F.defRuntimeConst<float[]>(Weights_, NumWeights_); @Weights = addrspace(4) constant [5 x float] \

auto Tile = F.declVar<float[]>(TileSize_, AddressSpace::SHARED); [float 0.9, float 0.1, float 0.2, float 8.3, float 0.4]

@Tile = addrspace(3) global [68 x float]

auto Tid
auto Gid

F.callBuiltin(getThreadIdX);
F.callBuiltin(getBlockIdX) * F.callBuiltin(getBlockDimX) + Tid;

Tile[Tid + Radius] = In[Gid];

F.beginIf(Tid < Radius); {
Tile[Tid] = In[Gid - Radius];
Tile[Tid + F.callBuiltin(getBlockDimX) + Radius] =
In[Gid + F.callBuiltin(getBlockDimX)];
} F.endIf();

F.callBuiltin(syncThreads) ;

auto Sum = F.defVar<float>(0.0f);
auto J = F.declVar<int>("j");

F.beginFor(J, -Radius, Radius+1, F.defVar(1)); {
Sum += Tile[Tid + Radius + J] * Weights[Radius + J];
} F.endFor();

Out[Gid] = Sum;

F.ret();
} F.endFunction();

Lawrence Livermore
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PJ-DSL function calls enable modular code

F.beginFunction(); {

auto [Out, In] = F.getArgs();

auto Radius = F.defRuntimeConst(Radius_);

auto Weights = F.defRuntimeConst(Weights_, NumWeights_);

auto Tile = F.declVar<float[]>(TileSize_, AddressSpace: :SHARED);
auto Tid = F.callBuiltin(getThreadIdX): auto &Fn = J->addFunction<float(float[], const float[], int, int)>("innerProduct");

auto Gid = F.callBuiltin(getBlockIdX) * F.callBuiltin(getBlockDimX) + Tid; Fn.beginFunction(); {
auto [Tile, Weights, Baseldx, Radius] = Fn.getArgs();

Tile[Tid + Radius] = In[Gid];
auto Sum = Fn.defVar<float>(0.0f);

F.beginIf(Tid < Radius); { auto J = Fn.declVar<int>("j");
Tile[Tid] = In[Gid - Radius]; auto One = Fn.defRuntimeConst(1);
Tile[Tid + F.callBuiltin(getBlockDimX) + Radius] =
In[Gid + F.callBuiltin(getBlockDimX)]; Fn.beginFor(J, -Radius, Radius + One, One); {
} F.endIf(); Sum += Tile[BaseIdx + J] * Weights[Radius + J];

} Fn.endFor();
F.callBuiltin(syncThreads);
Fn.ret(Sum);

auto BaseIdx = Tid + Radius; } Fn.endFunction();

[auto Sum = F.call("innerProduct"”, Tile, Weights, BaseIdx, Radius)j

Out[Gid] = Sum;

F.ret();
} F.endFunction();

Lawrence Livermore 1
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Deferred code generation enables
structural optimization in PJ-DSL

auto [C, A, B] = F.getArgs(); $ _/matmul 1@24
F.beginFunction(); .
( Average runtime: 6403.990 ms

auto [I, J, K] = F.declVars<int, int, int>();
auto [UbnI, UbnJ, UbnK, IncOne, Zero] = F.defRuntimeConsts(N, N, N, 1, 8);

F.buildLoopNest(F.forLoop(I, Zero, UbnI, IncOne),
F.forLoop(J, Zero, UbnJ, IncOne),
F.forLoop(K, Zero, UbnK, IncOne,

[&10) {

auto CIdx = I * N + J;
auto AIdx = I * N + K;
auto BIdx = K * N + J;
C[CIdx] += A[AIdx] * B[BIdx];
)
)
.emit();
F.ret();

}

F.endFunction() ;

Lawrence Livermore
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. B

Deferred code generation enables
structural optimization in PJ-DSL

auto [C, A, B] = F.getArgs(); $ _/matmul 1@24
F.beginFunction(); .
( Average runtime: 6403.990 ms
auto [I, J, K] = F.declVars<int, int, int>();
auto [UbnI, UbnJ, UbnK, IncOne, Zero] = F.defRuntimeConsts(N, N, N, 1, 8);
F.buildLoopNest(F.forLoop(I, Zero, UbnI, IncOne), LOOpTIlIng
F.forLoop(J, Zero, UbnJ, IncOne),
F.forLoop(K, Zero, UbnK, IncOne,
[&1() {
auto CIdx = I * N + J;
o AT TN $ ./matmul 1@24 16
auto BIdx = K * N + J; Average runtime: 1003.984 ms

C[CIdx] += A[AIdx] * B[BIdx]:

})
)l tile(TileSize)]

.emit();

F.ret();
}

F.endFunction() ;

PJ-DSL has potential for many more optimizations

M Lawrence Livermore
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JIT Frontends trade off supported specializations,
developer ease, and compiler portability

Specializations Developer  Compiler

Ease Portability
Value Array Object Launch Grid Dim. Template
Bounds
Annot. X ﬁ ﬁ ﬁ q"
PJ-CPP DD D
PJ-DSL L3 X D 5

Lawrence Livermore 37
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. .

Overview

1.Proteus JIT APIs
1. Annotation
2.PJ-CPP
3.PJ-DSL

2.Building Proteus
3.Proteus JIT Internals
4.Proteus JIT Performance
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Proteus is simple to build using CMake

git clone git@github.com:0lympus-HPC/proteus.git
mkdir proteus/build && cd proteus/build

cmake .. \
-DLLVM_INSTALL_DIR="S$LLVM_INSTALL_DIR" \
-DPROTEUS_ENABLE_CUDA=0on \

git clone git@github.com:0lympus-HPC/proteus.git
mkdir proteus/build && cd proteus/build

cmake .. \
-DLLVM_INSTALL_DIR=${LLVM_INSTALL_DIR} \

-DCMAKE _CUDA_ARCHITECTURES=90 \
-DCMAKE_C_COMPILER="$LLVM_INSTALL_DIR/bin/clang" \
-DCMAKE_CXX_COMPILER="$LLVM_INSTALL_DIR/bin/clang++" \
-DCMAKE_CUDA_COMPILER="$LLVM_INSTALL_DIR/bin/clang++"

-DCMAKE _C_COMPILER=${LLVM_INSTALL_DIR}/bin/clang \
-DCMAKE _CXX_COMPILER=${LLVM_INSTALL_DIR}/bin/clang++ \
-DPROTEUS_ENABLE_HIP=0n

AMDZ <3

NVIDIA

M Lawrence Livermore
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. B

Installing Proteus with Spackiseasyas 1, 2, 3!

Step 1: Add the repo

$ spack repo add https://github.com/Olympus-HPC/proteus/tree/main/packaging/spack

Lawrence Livermore 40
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. B

Installing Proteus with Spackiseasyas 1, 2, 3!

Step 1: Add the repo

$ spack repo add https://github.com/Olympus-HPC/proteus/tree/main/packaging/spack

Step 2: Install Proteus!

spack install proteus@main

spack install proteus@main +hip

spack install proteus@main +cuda

M Lawrence Livermore 41
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. B

Installing Proteus with Spackiseasyas 1, 2, 3!

Step 1: Add the repo

$ spack repo add https://github.com/Olympus-HPC/proteus/tree/main/packaging/spack

Step 2: Install Proteus!

spack install proteus@main

spack install proteus@main +hip

spack install proteus@main +cuda

M Lawrence Livermore 49
National Laboratory LLNL-PRES-2015399



. B

How to compile with Proteus enabled

Code Annotations API

* Requires Clang/LLVM
* AMD: Vanilla
* NVIDIA: Vanilla

Add the ProteusPass plugin and link
with libproteus and deps

clang++ -fpass-plugin=<path>/libProteusPass.so \
-lproteus S{LLVM_LIBS} S{CLANG_LIBS}

- ‘AII'\ IF\IFI'\\I:AI’\ I\IMAIII'\ f\\llf\f\lﬂ'l'n

Lawrence Livermore 4
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. B

How to compile with Proteus enabled

Code Annotations API

* Requires Clang/LLVM
* AMD: Vanilla
* NVIDIA: Vanilla

* Add the ProteusPass plugin and link
with libproteus and deps

clang++ -fpass-plugin=<path>/libProteusPass.so \
-lproteus S{LLVM_LIBS} S{CLANG_LIBS}

* We provide cmake exports

find_package(proteus CONFIG REQUIRED)
add_proteus(<target>)

Lawrence Livermore a4
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. B

How to compile with Proteus enabled

Code Annotations API C++ Frontend / DSL API
* Requires Clang/LLVM = Link with libproteus and deps
* AMD: Vanilla clang++ -Iproteus ${LLVM_LIBS} ${CLANG_LIBS}

* NVIDIA: Vanilla

* Add the ProteusPass plugin and link
. . find_package(proteus CONFIG REQUIRED)
W|th llbpl’OteUS and depS target_link_libraries(<target> proteusFrontend)

= We provide cmake exports

clang++ -fpass-plugin=<path>/libProteusPass.so \
-lproteus S{LLVM_LIBS} S{CLANG_LIBS}

* We provide cmake exports

find_package(proteus CONFIG REQUIRED)
add_proteus(<target>)

M Lawrence Livermore 45
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Overview

1.Proteus JIT APIs
1. Annotation
2.PJ-CPP
3.PJ-DSL

2.Building Proteus
3.Proteus JIT Internals
4.Proteus JIT Performance
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Proteus uses hashing to
uniquely identify specializations

Compile Time libproteus
Kernel Specialization @

I |
@ ‘ Extract IR from Specialize IR
- ] —
! binary values ‘
_|

P ' Specialize I CPP Jit @
@ | crcode | Module ~  hash

| ) 4 e r

Generate
: » DSLJit Module —— Specialized

I MR
L

Lawrence Livermore 47
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ALlLJIT frontends use shared Proteus infrastructure

Compile Time libproteus

Kernel Specialization @
L™ / ,
Extract IR from Specialize IR Yes *
- p —
binary values ‘ ]‘

- L

||

' F— .. . ] y i Is " ‘ !
Specialize CPP Jit O , :
" C++ Code ‘ Module '_'hash Cached? ~ Run

<> \ AN SRR

; . . Specialized Device
’ Generate No — Kernel T Compilation
»  DSLJit Module Specialized | Optimization .
= | ;L uvmR ' S
_—
Lawrence Livermore
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Caching in a two-level hierarchy with a volatile in-
memory cache and a persistent file-based cache

-~ N
* Keyisthe ——— — —
hash | Cache | | Tersistent
--------- N A
* Stores the colg  REQM) > MISS » MISS = [ Compile }
compiled caches OBJ < FILL FILL & Optimize
object
* Cachingis
inclusive

Lawrence Livermore 4
National Laboratory LLNL-PRES-2015399 9



. B

Caching in a two-level hierarchy with a volatile in-
memory cache and a persistent file-based cache

- >
* Keyis the ——
I In-memory | Persistent
has |
______________ ! —_ o
* Stores the colg  REQM) > MISS - MISS = [ SR }
compiled caches OBJ < FILL < FILL & Optimize
object
e Caching is Cold memory cache REQ(#) > MISS > HIT
. . g hot persistent cache g « EILL < |
inclusive

Lawrence Livermore
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. B

Caching in a two-level hierarchy with a volatile in-
memory cache and a persistent file-based cache

——
* Keyis the ——
i In-memory i Persistent
hash { Cache E Cache
______________ ! — o
* Stores the colg  REQW) > MISS > MISS = [ e }
compiled caches OBJ < FILL < FILL & Optimize
object
e Caching is Cold memory cache REQ(#) > MISS > HIT
. . g hot persistent cache g « EILL < |
inclusive
Hot memory cache REQ(#) > HIT
OBJ < |

Lawrence Livermore 1
National Laboratory LLNL-PRES-2015399 S



. .

Overview

1.Proteus JIT APIs
1. Annotation
2.PJ-CPP
3.PJ-DSL

2.Building Proteus
3.Proteus JIT Internals
4.Proteus JIT Performance
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PJ-DSL has lowest JIT overhead, followed by
Annotation and PJ-CPP

SKC  Optim. IR Gen. Dev. Kernel Gen. PJ-Annot. =51 PJ-DSL PJ-CPP

1000-
750-
[
E
o) 500-
S
l_ 250
il .-.---. % %
1 ? [ ki 7 7 E
0- ‘ [P ES ﬂ
& 'a@ - OQ"
S N

53
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Compilation time can
substantially affect JIT speedup

B F-Annct. [ PDSL O P-CcPP 2 Cold cache | | Warm cache

Bezier Floyd

3Imm Adam ) Attention 200+ Surface Conv3D Warshall GEMM | MiniBUDE
|E 1.7 1.02 1
< 1.75 4
g 11 0.96
> 1.50 4
o 1.0 0.90 -
o - .
3 1.25 4
o 09 0.84 -
3 1.00 + )
v 0.8 0.78

- 0.75
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Summary of Covered Components

What did we cover Additional capabilities (beyond this tutorial)
* Proteus specialization optimizations « Runtime configuration

* Value, array, launch bounds, grid « Asynchronous compilation

dim, template * Distributed caching modes

* Proteus JIT Frontends « Compiler pipeline customization

* Annotation

* PJ-CPP

* PJ-DSL

Proteus Internals
* Compile, runtime
* Caching
JIT Performance
* JIT stage breakdown
 Cacheimpact

Lawrence Livermore
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A Record-Replay approach for efficient
auto-tuning

Tuning with Mheme



)

Overview

1.Motivation & Problem Statement
2.Record-Replay Concept

3.Recording & Replay Mechanics
4.Autotuning (Search Spaces & Derivation)
5.Advanced Tuning (Optuna)
6.Deployment with Proteus

Lawrence Livermore
National La b atory  LLNL-PRES-2015399 .



Performance Optimization in a Nutshell
The manual approach

Code Code

& m— b o
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Performance Optimization in a Nutshell

The manual approach © Manual approach
. -
)
o Performance
CJD (“Greener” is better)
n
& O N
Manual effort
Code Code

& m— ) o

Manually optimizing code requires deep expertise that is hard and expensive to find

M Lawrence Livermore
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Performance Optimization in a Nutshell
The autotuning approach

Code Code

M Lawrence Livermore

National Laboratory =~ LLNL-PRES-2015399 60




Performance Optimization in a Nutshell
The autotuning approach

O Manual approach

- Auto-tuning approach

| . .

Performance
(“Greener” is better)

;.
»

Resources

O

Manual effort

Code Code

G - e

There exist many autotuning approaches that optimize codes.

M Lawrence Livermore 61
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Performance Optimization in a Nutshell
The autotuning approach

O Manual approach

/ ’.‘ ql\ - Auto-tuning approach

~ [] -
N N
r O
. ,\, % Performance
\ o (“Greener” is better)
> ¢ O
o (o] o
) -
_ Manual effort
Code Code

G ) ad

Yet, these approaches are impractical and rarely used in large applications as the entire process is impractical

M Lawrence Livermore 5
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Performance Optimization in a Nutshell
What happens when code is modified?

kernel
A kernel A’ kernel A’
----------------- kernel kernel
kerpet A A JLD 0000 e Changes to B
B ey . KernelB . o
................. kernel kernel
! C
kernel

M Lawrence Livermore
National Laboratory LLNL-PRES-2015399 63



Performance Optimization in a Nutshell
The entire process starts from scratch

kernel A’ kernel A’
To optimize a single kernel, < T A NN I NN
auto-tuners optimize and require | N s
the resources of the entire kernel kernel
application [ e e R Changesto B .......
Kernel B’

Lawrence Livermore 1
National Laboratory LLNL-PRES-2015399 6



Application Execution Time

How do you make autotuning practical?
A multi-phase solution based on the concept of record replay

Record Application

|
(L

Code Input
N\ e Code Data

kernel -
A

kernel ="
B

kernel =
C

B Lawrence Livermore

National Laboratory =~ LLNL-PRES-2015399

Replay kernels

1 I 1

Code Data Code Data Code Data

Skip due
to size

result per kernel
verification timing

65
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Overview

1.Motivation & Problem Statement
2.Record-Replay Concept

3.Recording & Replay Mechanics
4.Autotuning (Search Spaces & Derivation)

5.Advanced Tuning (Optuna)
6.Deployment with Proteus
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Record Replay can provide

¢ Deterministic
Reproducible . Repeatable
e Comparable

¢ Production Data
et * Real Memory State
Application ]
Inputs * No synthetic

Kernels
Record

Replay

¢ BuildIsolation
Decoupled

from e No Full rebuilds
i e Noapp-wide
autotuning

e Kernel Level

Isolated, self- Isolation
contained

execution e Sandboxed
Execution

Lawrence Livermore
National Laboratory LLNL-PRES-2015399
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Mneme: Record-Replay for Scalable Optimization

¢ Deterministic
* Repeatable » Implements record-replay for GPU
e Comparable
» Decouples tuning from application dependencies
* Production Data
—O—_ * RealMemory State .

e No Synthetic > |ntegrateS Wlth LLVM

Kernels o Python accessors to Functions, Blocks, Instructions etc.
o Proteus is the execution engine and applies optimizations

e Kernel Level
Isolation

e Sandboxed
Execution

* Build Isolation » Exposes replayed kernels to Python ecosystem
* No Fullrebuilds
* No app-wide
; autotuning » Enables autotuning, analysis, and experimentation

Making autotuning and compiler experimentation practical

Lawrence Livermore
National Laboratory LLNL-PRES-2015399 68
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Overview

1.Motivation & Problem Statement
2.Record-Replay Concept

3.Recording & Replay Mechanics
4.Autotuning (Search Spaces & Derivation)
5.Advanced Tuning (Optuna)
6.Deployment with Proteus

| Bl Lawrence Livermore .
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High Level Of Execution Phases

Build “Mneme”

e export LLVM_INSTALL_PATH=S{ROCM_PATH}
e pip install https://github.com/0Tympus-HPC/Mneme

Create a “recordable executable”

e Applyinstrumentation pass to the code

Record the execution of an application

e Checkthe generated artifacts

Replay a single Kernel

¢ Verify outputs
e Create your own autotuner

M Lawrence Livermore 4
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> export LLVM_INSTALL_PATH=${LLVM_PATH}

B u | ld M n e m e > pip install https://github.com/0Tympus-HPC/Mneme

Python 3.9 Python 3.10 Python 3.11 Python 3.12
ROCm 6.3 - LLVM 18
ROCm 6.4-LLVM 19
ROCm 7.1-LLVM 20
NVIDIA (cuda@12.2) Python 3.10 Python 3.11
LLVM 18
LLVM 19
LLVM 20

On ROCm systems (AMD) LLVM_PATH=${ROCM_PATH}

Lawrence Livermore 71
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Create a “recordable executable”

(‘I) Include Mneme on build process (2) Configure & Build

> cat CMakeLists.txt > cmake -B BUILD -S SRC_PRJ \

. -DCMAKE_C_COMPILER=$(mneme config cc) \
find_package (HIP REQUIRED) -DCMAKE_CXX_COMPILER=$(mneme config cxx) \
find_package(mneme REQUIRED) -DCMAKE_PREFIX_PATH=$(mneme config cmakedir)
add_executable(tutorial .exe tutorial.hip) > cmake --build BUILD/

add_mneme(tutorial.exe)

é’. All kernel executions become observable and
\ interceptable

I
\é‘ The executable carries its own compiler IR

 What:

| > Kernel launches go through Proteus API

! » Vendor launch APIs are not invoked directly
' Why it matters:

| What:
! » Embedded LLVM IR
! Why it matters:

1
! recompilation

! > No need to recover IR from build system or
| source tree

1
I configurations etc.

: o These canbe “tunable parameters” at replay time
|

1

Y
M
>
Q
=2
)
w
o
o
7]
v
3
o
q
~+
@
3
o
=
o
<
@,
7))
o
=
o
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Record the execution of an application

1 Wrap “recordable executable” execution
with mneme

> mneme record -rdb record-db-dir/ -vass X \
-- <recordable-executable> \
<arguments> Address Space

Managed by Mneme

(|HighAdress — LowAdress| = “vass”)

Trace of host-device Low Address High Address
events

device malloc

device malloc

) ® 6 HNu o
Launch Kernel “A” epilogue -

1) Store Mneme Memory to persistent storage (prologue)

1
1
1
1
1
1
1
1
1
1
! LLVM IR Code
1
1
1
1
1
2 |
\

Query proteus for LLVM IR of the kernel and store into storage @

)
)
3) Launch Kernel (synchronously)

4) Store Mneme Memory to persistent storage (epilogue)

Lawrence Livermore 73
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Record the execution of an application

(1 Wrap “recordable executable” execution <2> Recording artifacts are stored under

with mneme “record-db-dir”

> mneme record -rdb record-db-dir/ -vass X \ > tree record-db-dir/
-- <recordable-executable> \ — <static-hash>.json
<arguments> — DeviceState.epilogue.<static-hash>.<dynamic-hash>.mneme

— DeviceState.prologue.<static-hash>.<dynamic-hash>.mneme
— RecordedIR_<static-hash>.bc

Lawrence Livermore 24
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Replay a single Kernel

<1> Replay a single kernel invocation

> mneme replay \
-rdb record-example-dir/<static-hash>.json \

-rid <dynamic-hash> “default<03>”
y LLVM IR Code o
epilogue [

Address Space

Managed by Mneme
(|[HighAdress — LowAdress| = “vass”) \
7\ Instantiate Device LowAddress ngh Address TR ——— -

> Memory Space

1
1
1
1
1
1
1
1
1
00 1
1
1
1
1
1
1
1
1
1

Trace of host-device events

T T T T e —

@ Compile and execute
code through Proteus

Compare device Automated
memory with epilogue verification

Lawrence Livermore 2
National Laboratory LLNL-PRES-2015399 S
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Replay a single Kernel

: : : Execution emits a key-value dictionary describing
1 Replay a single kernel invocation 2 : .
various metrics
> mheme r'ep]ay \ "Replay-config": { "Result": {
_ _ _ A3 2 o c "grid": { "preprocess_ir_time": 9.2298723757267e-06,
rqlb record_examp1e Eh r/<static Dash>.Json \ T e e i
-rid <dynamic-hash> “default<03> s 1, "codegen_time": 0.01226967596448958,

Lo | "obj_size": 4792,

. "exec_time": [

"block": { 840848,
"x": 256, 82561,
"y, 81761,
Nmta ) 83360,

}, 76528

"shared_mem": 9, 1,

"specialize": false, "verified": true,

"set_launch_bounds": false, "executed"”: true,

"max_threads": null, "failed": false,

"min_blocks_per_sm": @, “start_time": "",

"specialize_dims": false, ‘end_time": "",

"passes": "default<03>", "gpu_id": 8,

"codegen_opt": 3, "const_mem_usage": -1,

"codegen_method": "serial", "local_mem_usage": 8,

"prune”: true, "reg_usage”: 12,

"internalize": true “error”: ""

} }
Lawrence Livermore
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Replay a single Kernel

: : : Execution emits a key-value dictionary describin
(1) Replay a single kernel invocation <2> Y .y : &
various metrics
> mheme rep1ay \ "Replay-config": { "Result": {
_ _ o . . "grid": { "prep _ir_time": 9.2298723757267¢-06,
rdb record-example Eh r/<static Dash>.Json \ 0 soe0e. B e e
-rid <dynamic-hash> “default<03> e 1, "codegen_time" : 0.81226967596448958,
"z":1 1 "obj_size": 4792,
}or "exec_time": [
= "block” : { 84048,
! . po x": 256, 82561,
\é These parameters can be modified "y, 81761,
"z 1 83368,
_______________________________________ - ¥, ’ 76520
1 . . . . " ", I,
1 By forming valid configuration ranges of these - e e erified : true
| parameters one can search the space and tune the , e punen founde ¢ fetee e e
1 "min_blocks_per_sm": 8, "start_time": "",
. appllcatlon in respect to some quantity of interest | Py i A rend_time": **.
______________________________________ ; "passes": "default<03>", ‘gpu_id": @,
"codegen_opt": 3, "const_mem_usage": -1,
"codegen_method": "serial”, "local_mem_usage": 8,
"prune”: true, "reg_usage”: 12,
"internalize": true “error”: ""
} }
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Replay a single Kernel

: : : Execution emits a key-value dictionary describing
1 Replay a single kernel invocation 2 various metrics
Iou |
> mneme replay \ "Replay-config": { "Result”: {
-rdb record-example-dir/<static-hash>.json \ T sease D botsasnonsasasanys e
-rid <dynamic-hash> “default<03> s 1, "codegen_time" : 8.01226967596448958,
"z":1 1 "obj_size": 4792,
}or "exec_time": [
"block” : { 84048,
! . x": 256, 82561,
\é These parameters can be modified "y, 81761,
"yt q 83360,
_______________________________________ . }, 76520
I . . . . ! _mem": @, I,
+ By forming valid configuration ranges of these ! ropovialize"; felae, verified": true,
' parameters one can search the space and tune the | etofpuneh bounds ¢ fatse, i i
1 "min_blocks_per_sm": @, "start_time": "",
| ' application in respect to some quantity of interest B B
______________________________________ - "passes": "default<03=", ‘gpu_id": @,
) "codegen_opt": 3, "const_mem_usage": -1,
~ . . "cod _ hod": " ial", "1 1_mem_ "8,
\é Several quantity of interest are supported ot etipiil ‘reg.usage’ : 12,
"internalize": true “error": ""
——————————————————————————————————————— 1 e )

> Execution Time (exec_time) :
» Register Usage (reg_usage) :
» Binary Size (obj_size) :
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How do you go from a single replay to autotune?

& Instantiate Device
&’ Memory Space

G2 Initialize Memory

Compile and execute
code through Proteus

Compare device
memory with epilogue
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How do you go from a single replay to autotune?

Instantiate Device
Memory Space

Select configuration
parameters

% Initialize Memory

Compile and execute
code through Proteus

Compare device
memory with epilogue
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Mneme Autotuning Concepts

» Mneme users define search spaces that describe ranges of possible parameters
o e.g.ParamBlockDim.x.range € (0.0,1.0]

» A user chosen Sampler selects parameter values

» Parameters must be derived to replay configuration points
o e.g.:BlockDim.x = ceil(ParamBlockDim.x.value * 1024)

» Configuration Points are submitted to a replay-executor
and the replay-executor returns a result

Lawrence Livermore 5
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Define a search space

i - self.grid_dim_x recorded_kernel.grid_dim.x
configuration. self.grid_dim_y recorded_kernel.grid_dim.y
self.grid_dim_z recorded_kernel.grid_dim.z

class EntireSpace(SearchSpace):
<1> Search Spaces get access to the recorded def __init_ (self, |recorded_kernel: RecordedExecution.KernelInstance]}:

self.block_dim_x
self.block_dim_y

<2> The class needs to define a composition of self.block_dim_z
parameters as a space self.shared_mem = recorded_kernel.shared_mem

recorded_kernel.block_dim.x
recorded_kernel.block_dim.y
recorded_kernel.block_dim.z

self._search_space = {
"specialize": BoolParam("specialize"),
"set_launch_bounds": BoolParam("set_launch_bounds"),
"specialize_dims": BoolParam("specialize_dims"),

<3> The class is required to override the }
dimension() function. def dimensions(self):
return self._search_space

Lawrence Livermore
National Laboratory LLNL-PRES-2015399 83



)

A user chosen Sampler selects parameter values

(‘I) Selects a sampling strategy

\ » ExhaustiveSampling
| » OptunaSampingStrategy

1
|
I
|
o Parameterized by the study :
I
|
1
|
I

|

I

| “sampler”

: o TPESampler

| o NSGAIlISampler
|

________ SS = (ExhaustiveSamplingStrategy(space)
(for i, config in enumerate(SS):]
( > lterate over samples

- > Internally we perform a call back
to SearchSpace.derived() :
|
|

Lawrence Livermore 1
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Parameters must be derived to replay configuration
pOintS (“self._search_space = {

"specialize": BoolParam("specialize"),
"set_Tlaunch_bounds": BoolParam("set_launch_bounds"),

<:1:>IDeHvHugExpeﬂnwenﬂDonﬁguraﬂons "specialize _dims": BoolParam("specialize dims"),
Is extremely powerful \}
def derived(self, params) —> ExperimentConfiguration:
Search Space de rived_config = {
"block": {

"x": self.block_dim_x,
"y": self.block_dim_y,
"z": self.block_dim_z,

O— ‘ Parameter },
llg rid"

A

: {"x": self.grid_dim_x,
Deterministic parameter derivation “y": self.grid_dim_y,
decouples the tuning parameter space "z": self.grid_dim_z},

"shared _mem": self.shared_mem,

"'specialize'": params["specialize"],

X Replay "set launch_bounds": params["set_launch_bounds"],
. Configuration Point ! spec1a112e_d1ms : params|["specialize_dims"],

from the replay space

return ExperimentConfiguration.from_dict(derived_config)
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Configuration Points are submitted to a replay-
executor and the replay-executor returns a result

“R?z:i;;;ciss_ir_time”: 9.2298723757267e-06, exe C u t 0 r = AS yn C Re p -LayExe C u t 0 r (

“opt_time": ©.0862066928908352011,

"codegen_time": 6.81226967596448958, reco rd_d b=a rg S [} reCO rd_d b ]

Qﬁ%@;[' record_id=args.record_id,
52561, iterations=5,

tacs. results db dir="./",

76528

']'\’:erifiecl": true, n um_WO rke rs=1 7

"executed": true,

"failed": false, )

"start_time": "",

"end_time": "",

"gpu_id": 8, .

‘const.nen_ussge” : -1, val = executor.evaluate(config)
ocal_mem_usage": 8,

"reg_usage”: 12,
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A simple example with a weather simulation kernel

(1) Configure & Build (3) Check generated artifacts

> cmake -B BUILD -S <mneme-repo>/examples/hecbench/ \ > tree /var/tmp/wsm5-tutorial/
-DCMAKE_C_COMPILER=$(mneme config cc) \ /var/tmp/wsm5-tutorial/
-DCMAKE_CXX_COMPILER=$(mneme config cxx) \ I 2192356271952697806 . json
~DWITH_MNEME_EXAMPLE_HIP=On \ _ —Devicestate.epilogue.2192356271952697806.4809330650447
-DCMAKE_PREFIX_PATH=$(mneme config cmakedir) JASAIE) (A

> cmake --build BUILD/ — ’

DeviceState.prologue.2192356271952697806.4809330650447713
119.mneme

L— RecordedIR_2192356271952697806.bc

<2> Wrap wsmb5 execution with mneme
@ Tune the kernel

> mneme record --record-db-dir /var/tmp/wsm5-tutorial/ \
-- ./wsm5/wsm5 1

Average kernel execution time: 598.550455 (ms) > python ./wsm5/tune.py --record-db \
Checksum: rain = 2.759990 snow = 2.759990 /var/tmp/wsm5-tutorial /2192356271952697806. json\
--record-id 4809330650447713119

Average baseline time 557865817.1428572

Best config has specialize: True and specilize_dims: True
and set launch bounds: True shows speedup over base line:
1.6735922250391375 and total time: 333334374.28571427

Lawrence Livermore -
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Let’s make the configuration space larger

self._search_space = {
"specialize": BoolParam("specialize"),
"set_launch_bounds": BoolParam("set_launch_bounds"),
"specialize_dims": BoolParam("specialize_dims"),
["passes": CategoricalParam("passes", ["3", "2", "1", "s", "z",]J

)

def derived(self, params) -> ExperimentConfiguration:
derived_config = {
"block": {
"x": self.block_dim_x,
"y": self.block_dim_y,
"z": self.block_dim_z,
}
"grid": {"x": self.grid_dim_x, "y": self.grid_dim_y, "z": self.grid_dim_z},
"shared_mem": self.shared_menm,
"specialize": params["specialize"],
"set_launch_bounds": params|["set_launch_bounds"],
"specialize_dims": params["specialize_dims"],
[ "passes": f"defau1t<0{params['passes']}>",]

}

return ExperimentConfiguration.from_dict(derived_config)
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Let’s make the configuration space larger

Tune the kernel

> python ./wsm5/tune.py --record-db \
/var/tmp/wsm5-tutorial /2192356271952697806.json\ --record-id 4809330650447713119
Average baseline time 557865817.1428572

Best config has optimization pipeline default<0l>, specialize: True and specilize_dims: False and
set launch bounds: True shows speedup over base Tine : 1.9499789602050337 and total time: 285934005.8571428

No need to record or reconfigure the application, just increase the search space and execution time drops

from 333ms to 285ms
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Optuna & Continuous Search Spaces

Use miniFE as an example.
#if defined(MINIFE_CSR_MATRIX)
template<typename MatrixType>
__global__ void matvec_kernel(const MINIFE_LOCAL_ORDINAL rows_size,
const typename MatrixType::LocalOrdinalType *Arowoffsets,
const typename MatrixType::GlobalOrdinalType *Acols,

» Sparse MatVev is a: const typename MatrixType::ScalarType *Acoefs,

o Grid-stride loop kernel const typename MatrixType::ScalarType *xcoefs,

o Launch-agnostic kernel ; typename MatrixType::ScalarType xycoefs)

o Execution-configuration MINIFE_LOCAL_ORDINAL stride = blockDim.x * gridDim.x;

independent kernel MINIFE_LOCAL_ORDINAL start = blockIdx.x * blockDim.x + threadIdx.x;

» How can someone tune: for(MINIFE_LOCAL_ORDINAL row = start; row < rows_size; row+=stride) {

> Launch Bounds MINIFE_GLOBAL_ORDINAL row_start = Arowoffsets[row];

> Grid imensions MINIFE_GLOBAL_ORDINAL row_end = Arowoffsets[row+1];

MINIFE_SCALAR sum = 0;

» Block Dimensions

// Use the unroll factor in the OpenMP program
#pragma unroll 27
for(MINIFE_GLOBAL_ORDINAL i = row_start; i < row_end; ++i) {
sum += Acoefs[i] * xcoefs[Acols[il];
¥

ycoefs[row] = sum;
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Optuna & Continuous Search Spaces

miniFE as an example. How do capture such “conditional” / “constraint” space

> Generate a unit hypercube [0,1]™

o Everydim in the hypercube represents the range of minimum to maximum valid values

class EntireSpace(SearchSpace):

Lawrence Livermore
National Laboratory

def __init_ (self, recorded _kernel: RecordedExecution.KernelInstance):

self.recorded_kernel = recorded_kernel

self.original_size = recorded_kernel.grid_dim.x * recorded_kernel.block_dim.x

_pos_min_val = sys.float_info.min * sys.float_info.epsilon

self._search_space = {
"warp_fraction": RealRangeParam("warp_fraction", _pos_min_val, 1.0),
"grid_fraction": RealRangeParam('"grid_fraction", _pos_min_val, 1.0),
"max_threads": RealRangeParam('"max_threads", _pos_min_val, 1.0),
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Optuna & Continuous Search Spaces

miniFE as an example. Derive fractions to concrete replay values
def derived(self, params) —> ExperimentConfiguration:

# Compute the number of active Warps and map that to the numThreads.
Compute number of threads by computing (" maxWarpsInBlock = 1024 / 64 N
1 . b £ * fracti numActiveWarps = min(
maximuimindimberoiwalps S iraction math.ceil(params["warp_fraction"] x maxWarpsInBlock), maxWarpsInBlock
)
numThreads = int(numActiveWarps * 64) py
# How many blocks exist out of the total size taking into account the new block size
) maxNumBlocks = int(math.ceil(self.original_size / numThreads))
2 Compute the maximum number of blocks by 4 J - A
taking into account the number of threads # Compute the fraction of that maximum
gridDimx = int(
min(math.ceil(maxNumBlocks * params|["grid_fraction"]), maxNumBlocks)
)
Do the same for launch bounds. Launch N ~
bounds need to be larger or equal to the # max threads needs to always be >= numThreads and smaller than 1024.
# This is a constraint provided by the vendors.
number Of threads and Smallel‘to 1024 # So here we compute the value: ~N
max_threads_range = 1024 - numThreads
max_thread_value = numThreads + int(
min(math.ceil(max_threads_range * params["max_threads"]), max_threads_range)
. )
Map the computed values to the derived = o
confi erived_config = {
g /’5 "block": {"x": numThreads, "y": 1, "z": 1}, -\\

"grid": {"x": gridDimx, "y": 1, "z": 1},
"shared_mem": 0,

"specialize": True,

"max_threads": max_thread_value,
"set_launch_bounds": True,
"specialize_dims": True,

Lawrence Livermore
National Laboratory LLNL-PRES-2015399 93



. B

Optuna & Continuous Search Spaces

miniFE as an example. Use Optuna Studies to traverse the combinatorial space

Cstudy = optuna.create_study( A
Create an optuna study. Use any optuna direction="maximize",

sampler (TPESample is the SOTA optuna sampler=optuna.samplers.TPESampler(),
sampler) )

J \\

r
SS = OptunaSamplingStrategy(space, study, 200)

_for i, (config, ctrial) in enumerate(SS):
if not config.is_valid():
continue

val = executor.evaluate(config)
@ Bind study to Mneme sampler and if val.verified:

define number of samples avg_time = statistics.mean(val.exec_time)
speedup = baseline_time / avg_time

ctrial.set_user_attr("mneme.config", config.to_dict())
ctrial.set_user_attr("mneme.result", val.to_dict())

[ study.tell(ctrial, speedup) ]
print(

f"\tExperiment {i+1} with options MaxThreads:{config.max_threads}

. GridX: {config.grid.x} BlockX: {config.block.x} shows speedup over
Provide feedback to “optuna” study base line : {speedup} and total time: {avg_time}"

)
else:

study.tell(ctrial, (1 << 64) - 1)

print(i, config.hash(), f"Experiment failed with {val.error}")
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Optuna & Continuous Search Spaces

Experiment 196 with options MaxThreads:135 GridX:

m|n|FE as an example. Execute the tunel‘ Experiment 197 with options MaxThreads:198 GridX:
. . . . Experiment 198 with options MaxThreads:218 GridX:
. Experiment 199 with options MaxThreads:156 GridX:

>T|me to bUIld mInIFE' Experiment 200 with options MaxThreads:83 GridX: 2

Optimal speedup is 1.9270604357800594
uning time was 36.69966793060303 to perform 200 samples,

o 10s clean build, 4 seconds modifying single source file

» Time to execute miniFE:
o No Recording : 36 seconds
o With Recording: 38 seconds

= Thiscostis paid once

= Sizethe GPU snapshot and speed of IO define slowdown

» Back-of-the-envelope calculation:

o Torun 200 experiments and optimize a single kernel, we would need roughly:

1. Run MiniFE: 200 * (4 (compile-time) + 7 (humber of experiments to reduce noise) * 36) = 51200 seconds = 0.004
observation/second

2. Usesub process + standalone replay tool: 38 + 200 * (7 seconds) = 1438 seconds = 0.13 observations/second «——— SC-23

3. Use python mneme interface (single worker): 38 + 120 (seconds) = 158 seconds =1.26 observations/second <«— Mneme
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Asynchronous Execution With Multiple Workers

pipelines = self.pipeline_manager.generate(50, 120, 20, True, 0)
pipelines = [self.pipeline_manager.to_string(p) for p in pipelines]
pipelines += [

"default<03>",

"default<02>",

"default<01>",

"default<0s>",

"default<0z>",
]

self._search_space = {
"specialize": BoolParam("specialize"),
"set_launch_bounds": BoolParam("set_launch_bounds"),
"specialize _dims": BoolParam("specialize_dims"),
"passes": CategoricalParam("passes", pipelines),
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Asynchronous Execution With Multiple Workers

@ Create the sampling strategy
[SS = ExhaustiveSamplingStrategy(Spaceq

for i, config in enumerate(SS):
Invoke submit that returns a future if not config.is_valid():

continue
@ Get results (blocking call)

futures.append{(config,[executor.submit(config)))]

val = |future.result()

for i, {CT?fig, future) ij enumerate(futures):
.f
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Asynchronous Execution With Multiple Workers

executor = AsyncReplayExecutor(

> time python bezier-surface/tune.py --record-db \ record_db:a rgs.reco rd_db,
<record-db>.json --record-id <dynamic-hash> record id=a rgs. record id.
real  9m19.579s iterations=5,
JEET il o LAk results_db_dir="./",
sys  8m22.552s num_workers=1,

)

executor = AsyncReplayExecutor/(

> time python bezier-surface/tune.py --record-db \ record db=a rgs.reco rd db
<record-db>.json --record-id <dynamic-hash> . - !
o record_id=args.record_id,
iterations=5,
real 2m30.036s TN "
user  10m13.150s results_db_dir="./",
Sys 8m21.479s num_workers=4,
)
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Serve Mneme configurations to Proteus

> ./bezier-surface/bezier-orig -f ../bezier- \

surface/input/control. txt -n 8192
host execution time: 17372 ms
kernel execution time: 142 ms

PASS
Proteus Only (No Cache) Proteus + Mneme Tuning (No Cache)
> ./bezier-surface/bezier-proteus -f ../bezier- \ > export PROTEUS_TUNED_KERNELS=bezier-tuned.json
surface/input/control. txt -n 8192 > ./bezier-surface/bezier-proteus -f ../bezier- \
host execution time: 17289 ms surface/input/control. txt -n 8192
kernel execution time: 119 ms host execution time: 17260 ms
PASS kernel execution time: 120 ms
PASS
Proteus Only (With Cache) Proteus + Mneme Tuning (With Cache)
> ./bezier-surface/bezier-proteus -f ../bezier- \ > export PROTEUS_TUNED_KERNELS=bezier-tuned.json
surface/input/control. txt -n 8192 > ./bezier-surface/bezier-proteus -f ../bezier- \

host execution time: 17296 ms
kernel execution time: 17 ms
PASS

surface/input/control. txt -n 8192
host execution time: 17407 ms
kernel execution time: 10 ms
PASS
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Summary of Covered Components

What did we cover Additional capabilities (beyond this tutorial)
» Described core concepts of Mneme » Experiment persistency
> Build instructions o Check optuna storage + studies using
» Basic Usage: datapases
ge: » Experiment Visualization

o Record o pip install optuna-dashboard

o Replay o optuna-dashboard sqlite:///my_study.db

o Tune » Multi Objective optimizations

" Search Space > Hierarchical Search spaces

= Derive Configurations
= Evaluate Configurations

» Advanced Concepts
o Composing with Optuna hyperparameter
search
o Multiple workers
o Asynchronous submission
o Running Mneme configurations in proteus

» Constraint experiments
» Grounding experiments
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Olympus-HPC

Proteus Mneme Olympus-HPC

» Record & replay GPU kernels in

isolation
o Debug capability
o Autotuning
o Introspection of LLVM
optimizations
» Orders-of-magnitude faster
feedback loops

o Optuna empowered
Hyperparameter tuning

» Enables large-scale data
collection for ML-guided
optimization

» Bridge compile time ©
runtime © data

» Turn expensive end-to-end
experiments into fast inner
loops

|

I
» Make the compiler Dynamic !
|
I
|
1
|
I
|
. > Enable practical ML-driven
I
|
1
|
I
|
1
|
I
|
1

o Empowered by LLVM
o Hybrid JIT (AoT prepares JIT)

I I
I I
I |
| |
I I
I I
! :
\ » Specialize code using i
. runtime knowledge i
; o Arguments I
I o Shapes ;
: o Configs I
|

! > Low overhead, cacheable, I
. . . 1

, incrementally intrusive to |
|

! |
I |
| |

existing codebases

optimization inside real
applications

» Enable deployment of auto
tuned kernels with no user
interaction

Olympus-HPC turns LLVM into an interactive optimization platform — not a one-shot compiler.
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Questions and Feedback

»Reproduce the tutorial examples locally
» Star the repos if you find them useful

»Engage
olssues
oQuestions
oContributions

> ... are more than welcome
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