
1LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Prepared by LLNL under Contract DE-AC52-07NA27344. Center for Advanced Scientific Computing (CASC), LLNL
Zane Fink, Konstantinos Parasyris, Giorgis Georgakoudis

Feb. 1st 2026
Tutorial @ CGO26

Proteus: Programmable JIT
compilation for C/C++

2LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Proteus: programmable C/C++ for
JIT compilation and optimization

Mneme: advanced scalable
autotuning using Proteus

Olympus-HPC

• We’ll show how to install and use Proteus, dive into its internals, and
highlight compelling performance results

• We’ll introduce Mneme, walk through its installation and usage, and
explore examples of extreme autotuning in action

• Questions are welcome throughout: jump in anytime!

3LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

The Proteus Project

Giorgis
Georgakoudis (PI)

David
Beckingsale

Konstantinos
Parasyris

Tal Ben Nun

John Bowen

Thomas Stitt

▪ https://github.com/Olympus-HPC/proteus

▪ Project goal

Research and develop programmable JIT
compilation and optimization to maximize

the performance of HPC codes

Zane Fink

easy-to-use
easy-to-integrate

high-performance

state-of-the-art

scalable

https://github.com/Olympus-HPC/proteus
https://github.com/Olympus-HPC/proteus
https://github.com/Olympus-HPC/proteus
https://github.com/Olympus-HPC/proteus

4LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

We develop Proteus open-source
▪ Support

— RDC/non-RDC compilation
— Device libraries

• (both Proteus and non-Proteus compiled)

▪ Continuous integration testing
— GitHub and GPU-enabled GitLab CI
— LLVM 18/19/20
— CUDA 12.2
— ROCm 6.2.1, 6.3.1, 6.4.1, 7.1.0

▪ Documentation
— https://olympus-hpc.github.io/proteus/

▪ Actively Developed
— https://github.com/Olympus-HPC/proteus

https://olympus-hpc.github.io/proteus/
https://olympus-hpc.github.io/proteus/
https://olympus-hpc.github.io/proteus/
https://olympus-hpc.github.io/proteus/
https://github.com/Olympus-HPC/proteus
https://github.com/Olympus-HPC/proteus
https://github.com/Olympus-HPC/proteus
https://github.com/Olympus-HPC/proteus

5LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

What we do now to get high performance from our
HPC software has limitations

▪ Static ahead-of-time (AOT)
optimizing compilation

▪ Write ugly, compile-time value specializations

Compile
O3

Source

6LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

The Just-in-Time (JIT) compilation landscape: it’s
hard for statically compiled languages

RuntimeCompile time

Compiler
(static opt.)

Source

RuntimeCompile time

“Thin”
Compiler

Interpreter
+

JIT compiler
(dynamic opt.)

Source

Intermediate
Representation
(bytecode)

• Challenges for JIT in
C/C++/Fortran
• Introspection is hard for

statically compiled lang.
• Hard to beat static

compilation optimization
• Overhead

7LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Prior work is inspirational, but obsolete, non-portable, slow
EasyJIT ClangJIT

CUDA/HIP RTC
(CUDA Jitify)

C++ functors C++ templates CUDA/HIP only

8LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Workflow: developer uses the Proteus API, compiles,
runs with JIT compilation and optimization enabled

RuntimeCompile time

API

Compile Run

Cache

libproteus

JIT compiles &
optimizes

• APIs
• Code annotations (Annotation)
• C++ Frontend (PJ-CPP)
• Embedded Domain Specific Language (PJ-DSL)

• Optimization at runtime
• Runtime constexpr

• Template instantiations
• GPU launch parameters
• Customize compiler pipeline per kernel

9LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Proteus’ central optimization
is runtime constant folding
• Runtime Constant Folding

• Scalars, arrays, objects
• API dependent

• GPU launch parameters: number of threads,
blocks

• Eliminate computation, unroll loops, inlining,
algebraic transformations, ...

O3

r = 0

for(i=0; i<N; ++i) {
 if (c) r += log10(x);
 else r += -log10(x);

}

c = True
x = 10

N = 10

r = 10

r = 0;

for(i = 0; i<N; ++i) {
 if (c) r += log10(x);
 else r += -log10(x);

}

10 1

10LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Proteus JIT optimization significantly reduces
execution time with minimal overhead

NVIDIA V100 AMD MI250X

AMD MI250X

• 16 of the top 20 kernels are in Marbl or MFEM
• These 16 kernels represent 61.5% of the kernel runtime
• Total runtime is 35.2% faster with JIT specialization

AMD MI300A

courtesy of Thomas Stitt

courtesy of John Bowen

Heterogeneous Computing Benchmarks (HeCBench)

results from CGO25 paper

12LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Overview

1.Proteus JIT APIs
1. Annotation
2. PJ-CPP
3. PJ-DSL

2.Building Proteus
3.Proteus JIT Internals
4.Proteus JIT Performance

13LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

The Code Annotation API is
easy to apply to existing code

Input

Output

JIT Opportunities:

14LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

The Code Annotation API is
easy to apply to existing code

Input

Output

JIT Opportunities:
• N, radius are runtime constants

15LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

The Code Annotation API is
easy to apply to existing code

Input

Output

JIT Opportunities:
• N, radius are runtime constants

• weights is constant

16LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

The Code Annotation API is
easy to apply to existing code

Input

Output

JIT Opportunities:
• N, radius are runtime constants

• weights is constant

• Tile is dynamic shared memory

17LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

The Code Annotation API is
easy to apply to existing code Argument index

Input

Output

__attribute__((annotate(“jit”, 1, ..., N)))

18LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

The Code Annotation API can
JIT-compile constant arrays

Input

Output

__attribute__((annotate(“jit”, 1, ..., N)))

proteus::jit_array

19LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

The Code Annotation API converts
dynamic shared memory to static

Input

Output

__attribute__((annotate(“jit”, 1, ..., N)))

proteus::jit_array

proteus::shared_array

20LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Launch Bound, Dimension Specialization
expose additional optimization opportunities

Input

Output

__attribute__((annotate(“jit”, 1, ..., N)))

proteus::jit_array

proteus::shared_array

21LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

The Annotation API applies to lambda functions

Input

Output

__attribute__((annotate(“jit”, 1, ..., N)))

proteus::jit_array

proteus::shared_array

proteus::register_lambda

22LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

The C++ Frontend is a portable RTC
implementation that supports specialization

Code with
specialization

Create Jit Module

Get Kernel handle
(will compile)

Launch!

Format

23LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

C++ Frontend enables
runtime template instantiation

Templated
code

Get instance
handle

(will compile)

Function
Type Value

24LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

C++ Frontend is string templating engine agnostic

25LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

The C++ frontend supports
the full suite of specialization

26LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

PJ-DSL constructs LLVM IR at runtime

27LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Kernels are added to JitModules with
their name and signature

28LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

PJ-DSL uses paired constructs for control structures

29LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Typed Var objects wrap LLVM scalar types

30LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

PJ-DSL provides access to bult-in device functions

Screenshot of other
builtins

31LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Var objects support arithmetic, math operations

32LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

PJ-DSL kernels are portable between GPU vendors

33LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

PJ-DSL supports constant, variable arrays

Input

Output

34LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

PJ-DSL function calls enable modular code

35LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Deferred code generation enables
structural optimization in PJ-DSL

36LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

PJ-DSL has potential for many more optimizations

Deferred code generation enables
structural optimization in PJ-DSL

Loop Tiling

37LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

JIT Frontends trade off supported specializations,
developer ease, and compiler portability

Developer
Ease

Compiler
Portability

Value Array Object Launch
Bounds

Grid Dim. Template

Annot.

PJ-CPP

PJ-DSL

Specializations

38LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Overview

1.Proteus JIT APIs
1. Annotation
2. PJ-CPP
3. PJ-DSL

2.Building Proteus
3.Proteus JIT Internals
4.Proteus JIT Performance

39LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Proteus is simple to build using CMake

40LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Installing Proteus with Spack is easy as 1, 2, 3!

Step 1: Add the repo

41LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Installing Proteus with Spack is easy as 1, 2, 3!

Step 1: Add the repo

Step 2: Install Proteus!

42LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Installing Proteus with Spack is easy as 1, 2, 3!

Step 1: Add the repo

Step 2: Install Proteus!

43LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

How to compile with Proteus enabled
Code Annotations API

• Requires Clang/LLVM
• AMD: Vanilla
• NVIDIA: Vanilla

• Add the ProteusPass plugin and link
with libproteus and deps

clang++ -fpass-plugin=<path>/libProteusPass.so \
 -lproteus ${LLVM_LIBS} ${CLANG_LIBS}

• We provide cmake exports
find_package(proteus CONFIG REQUIRED)
add_proteus(<target>)

C++ Frontend / DSL API

▪ Link with libproteus and deps

clang++ -lproteus ${LLVM_LIBS} ${CLANG_LIBS}

▪ We provide cmake exports

find_package(proteus CONFIG REQUIRED)
target_link_libraries(<target> proteusFrontend)

44LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

How to compile with Proteus enabled
Code Annotations API

• Requires Clang/LLVM
• AMD: Vanilla
• NVIDIA: Vanilla

• Add the ProteusPass plugin and link
with libproteus and deps

clang++ -fpass-plugin=<path>/libProteusPass.so \
 -lproteus ${LLVM_LIBS} ${CLANG_LIBS}

• We provide cmake exports
find_package(proteus CONFIG REQUIRED)
add_proteus(<target>)

C++ Frontend / DSL API

▪ Link with libproteus and deps

clang++ -lproteus ${LLVM_LIBS} ${CLANG_LIBS}

▪ We provide cmake exports

find_package(proteus CONFIG REQUIRED)
target_link_libraries(<target> proteusFrontend)

45LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

How to compile with Proteus enabled
Code Annotations API

• Requires Clang/LLVM
• AMD: Vanilla
• NVIDIA: Vanilla

• Add the ProteusPass plugin and link
with libproteus and deps

clang++ -fpass-plugin=<path>/libProteusPass.so \
 -lproteus ${LLVM_LIBS} ${CLANG_LIBS}

• We provide cmake exports
find_package(proteus CONFIG REQUIRED)
add_proteus(<target>)

C++ Frontend / DSL API

▪ Link with libproteus and deps

clang++ -lproteus ${LLVM_LIBS} ${CLANG_LIBS}

▪ We provide cmake exports

find_package(proteus CONFIG REQUIRED)
target_link_libraries(<target> proteusFrontend)

46LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Overview

1.Proteus JIT APIs
1. Annotation
2. PJ-CPP
3. PJ-DSL

2.Building Proteus
3.Proteus JIT Internals
4.Proteus JIT Performance

47LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Proteus uses hashing to
uniquely identify specializations

48LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

All JIT frontends use shared Proteus infrastructure

49LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Caching in a two-level hierarchy with a volatile in-
memory cache and a persistent file-based cache

• Key is the
hash

• Stores the
compiled
object

• Caching is
inclusive

Persistent
Cache

In-memory
Cache

REQ(#) MISS MISS Compile
& OptimizeFILLFILLOBJ

REQ(#) MISS HIT

FILLOBJ

REQ(#)

OBJ

HIT

Cold
caches

Cold memory cache
hot persistent cache

Hot memory cache

50LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Caching in a two-level hierarchy with a volatile in-
memory cache and a persistent file-based cache

• Key is the
hash

• Stores the
compiled
object

• Caching is
inclusive

Persistent
Cache

In-memory
Cache

REQ(#) MISS MISS Compile
& OptimizeFILLFILLOBJ

REQ(#) MISS HIT

FILLOBJ

REQ(#)

OBJ

HIT

Cold
caches

Cold memory cache
hot persistent cache

Hot memory cache

51LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Caching in a two-level hierarchy with a volatile in-
memory cache and a persistent file-based cache

• Key is the
hash

• Stores the
compiled
object

• Caching is
inclusive

Persistent
Cache

In-memory
Cache

REQ(#) MISS MISS Compile
& OptimizeFILLFILLOBJ

REQ(#) MISS HIT

FILLOBJ

REQ(#)

OBJ

HIT

Cold
caches

Cold memory cache
hot persistent cache

Hot memory cache

52LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Overview

1.Proteus JIT APIs
1. Annotation
2. PJ-CPP
3. PJ-DSL

2.Building Proteus
3.Proteus JIT Internals
4.Proteus JIT Performance

53LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

PJ-DSL has lowest JIT overhead, followed by
Annotation and PJ-CPP

54LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Compilation time can
substantially affect JIT speedup

55LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Summary of Covered Components
What did we cover Additional capabilities (beyond this tutorial)

• Runtime configuration
• Asynchronous compilation
• Distributed caching modes
• Compiler pipeline customization

• Proteus specialization optimizations
• Value, array, launch bounds, grid

dim, template
• Proteus JIT Frontends

• Annotation
• PJ-CPP
• PJ-DSL

• Proteus Internals
• Compile, runtime
• Caching

• JIT Performance
• JIT stage breakdown
• Cache impact

56LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

A Record-Replay approach for efficient
auto-tuning

Tuning with Mneme

57LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Overview

1.Motivation & Problem Statement
2.Record–Replay Concept
3.Recording & Replay Mechanics
4.Autotuning (Search Spaces & Derivation)
5.Advanced Tuning (Optuna)
6.Deployment with Proteus

58LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Performance Optimization in a Nutshell
The manual approach

Code Code

59LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Performance Optimization in a Nutshell
The manual approach

Code CodeCode

Manual effort

Re
so

ur
ce

s

Performance
(“Greener” is better)

Manual approach

Manually optimizing code requires deep expertise that is hard and expensive to find

60LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Performance Optimization in a Nutshell
The autotuning approach

Code Code

61LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Performance Optimization in a Nutshell
The autotuning approach

Code Code

Manual effort

Re
so

ur
ce

s

Performance
(“Greener” is better)

Manual approach

Auto-tuning approach

There exist many autotuning approaches that optimize codes.

62LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Performance Optimization in a Nutshell
The autotuning approach

Code Code

Manual effort

Re
so

ur
ce

s

Performance
(“Greener” is better)

Manual approach

Auto-tuning approach

Yet, these approaches are impractical and rarely used in large applications as the entire process is impractical

63LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Performance Optimization in a Nutshell
What happens when code is modified?

kernel
A

kernel
B

kernel
C

kernel A’

kernel
B’

kernel
C’

Changes to
Kernel B’

kernel A’

kernel
B’’

kernel
C’

64LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Performance Optimization in a Nutshell
The entire process starts from scratch

kernel A’

kernel
B’

kernel
C’

Changes to
Kernel B’

kernel A’

kernel
B’’

kernel
C’

To optimize a single kernel,
auto-tuners optimize and require

the resources of the entire
application

65LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

How do you make autotuning practical?
A multi-phase solution based on the concept of record replay

Code Data

kernel
A

kernel
C

DataCode

kernel
B

DataCode

result

verification

per kernel

timing

Skip due
to size

Replay kernels

Ap
pl

ic
at

io
n

Ex
ec

ut
io

n
Ti

m
e

kernel
A

kernel
B

kernel
C

InputCode

Record Application

DataCode

66LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Overview

1.Motivation & Problem Statement
2.Record–Replay Concept
3.Recording & Replay Mechanics
4.Autotuning (Search Spaces & Derivation)
5.Advanced Tuning (Optuna)
6.Deployment with Proteus

67LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Record Replay can provide

Reproducible

• Deterministic
• Repeatable
• Comparable

Real
Application

Inputs

• Production Data
• Real Memory State
• No synthetic

Kernels

Decoupled
from

Application
Build

• Build Isolation
• No Full rebuilds
• No app-wide

autotuning

Isolated, self-
contained
execution

• Kernel Level
Isolation

• Sandboxed
Execution

Record
Replay

68LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Mneme: Record–Replay for Scalable Optimization

Reproducible

• Deterministic
• Repeatable
• Comparable

Real
Application

Inputs

• Production Data
• Real Memory State
• No synthetic

Kernels

Decoupled
from

Application
Build

• Build Isolation
• No Full rebuilds
• No app-wide

autotuning

Isolated, self-
contained
execution

• Kernel Level
Isolation

• Sandboxed
Execution

➢ Implements record–replay for GPU

➢ Decouples tuning from application dependencies

➢ Integrates with LLVM
o Python accessors to Functions, Blocks, Instructions etc.
o Proteus is the execution engine and applies optimizations

➢ Exposes replayed kernels to Python ecosystem

➢ Enables autotuning, analysis, and experimentation

Making autotuning and compiler experimentation practical

69LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Overview

1.Motivation & Problem Statement
2.Record–Replay Concept
3.Recording & Replay Mechanics
4.Autotuning (Search Spaces & Derivation)
5.Advanced Tuning (Optuna)
6.Deployment with Proteus

70LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

High Level Of Execution Phases

Build “Mneme”
• export LLVM_INSTALL_PATH=${ROCM_PATH}
• pip install https://github.com/Olympus-HPC/Mneme

Create a “recordable executable”
• Apply instrumentation pass to the code

Record the execution of an application
• Check the generated artifacts

Replay a single Kernel
• Verify outputs
• Create your own autotuner

71LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Build Mneme

On ROCm systems (AMD) LLVM_PATH=${ROCM_PATH}

AMD Python 3.9 Python 3.10 Python 3.11 Python 3.12

ROCm 6.3 – LLVM 18

ROCm 6.4 – LLVM 19

ROCm 7.1 – LLVM 20

> export LLVM_INSTALL_PATH=${LLVM_PATH}
> pip install https://github.com/Olympus-HPC/Mneme

NVIDIA (cuda@12.2) Python 3.9 Python 3.10 Python 3.11 Python 3.12

LLVM 18

LLVM 19

LLVM 20

72LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Include Mneme on build process

> cmake -B BUILD -S SRC_PRJ \
 -DCMAKE_C_COMPILER=$(mneme config cc) \
 -DCMAKE_CXX_COMPILER=$(mneme config cxx) \
 -DCMAKE_PREFIX_PATH=$(mneme config cmakedir)
> cmake --build BUILD/

Create a “recordable executable”

> cat CMakeLists.txt
...
find_package(HIP REQUIRED)
find_package(mneme REQUIRED)
add_executable(tutorial.exe tutorial.hip)
add_mneme(tutorial.exe)
...

1 Configure & Build2

What:
➢ Embedded LLVM IR
Why it matters:
➢ Enables post-mortem analysis and

recompilation
➢ No need to recover IR from build system or

source tree

The executable carries its own compiler IR

What:
➢ Kernel launches go through Proteus API
➢ Vendor launch APIs are not invoked directly
Why it matters:
➢ Intercept kernel launches, arguments, launch

configurations etc.
o These can be “tunable parameters” at replay time

All kernel executions become observable and
interceptable

73LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Record the execution of an application
Wrap “recordable executable” execution

with mneme
> mneme record -rdb record-db-dir/ -vass X \
 -- <recordable-executable> \
 <arguments>

1

Trace of host-device
events

Low Address High Address

Address Space
Managed by Mneme

(|HighAdress – LowAdress| = “vass”)

device malloc

device malloc

Launch Kernel “A”
1) Store Mneme Memory to persistent storage (prologue)

prologue

2) Query proteus for LLVM IR of the kernel and store into storage

LLVM IR Code

3) Launch Kernel (synchronously)
4) Store Mneme Memory to persistent storage (epilogue)

epilogue

74LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Record the execution of an application
Wrap “recordable executable” execution

with mneme
> mneme record -rdb record-db-dir/ -vass X \
 -- <recordable-executable> \
 <arguments>

1 Recording artifacts are stored under
“record-db-dir”2

> tree record-db-dir/
── <static-hash>.json
── DeviceState.epilogue.<static-hash>.<dynamic-hash>.mneme
── DeviceState.prologue.<static-hash>.<dynamic-hash>.mneme
── RecordedIR_<static-hash>.bc

75LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Replay a single Kernel
Replay a single kernel invocation

> mneme replay \
 -rdb record-example-dir/<static-hash>.json \
 -rid <dynamic-hash> “default<O3>”

1
prologue

LLVM IR Code
epilogue

record-example-dir/

Trace of host-device events

Instantiate Device
Memory Space

High Address

Address Space
Managed by Mneme

(|HighAdress – LowAdress| = “vass”)
Low Address

Initialize Memory

Compile and execute
code through Proteus

Compare device
memory with epilogue

Automated
verification

76LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Replay a single Kernel
Replay a single kernel invocation

> mneme replay \
 -rdb record-example-dir/<static-hash>.json \
 -rid <dynamic-hash> “default<O3>”

1 Execution emits a key-value dictionary describing
various metrics2

77LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Replay a single Kernel
Replay a single kernel invocation

> mneme replay \
 -rdb record-example-dir/<static-hash>.json \
 -rid <dynamic-hash> “default<O3>”

1 Execution emits a key-value dictionary describing
various metrics2

By forming valid configuration ranges of these
parameters one can search the space and tune the
application in respect to some quantity of interest

These parameters can be modified

78LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Replay a single Kernel
Replay a single kernel invocation

> mneme replay \
 -rdb record-example-dir/<static-hash>.json \
 -rid <dynamic-hash> “default<O3>”

1 Execution emits a key-value dictionary describing
various metrics2

By forming valid configuration ranges of these
parameters one can search the space and tune the
application in respect to some quantity of interest

These parameters can be modified

➢ Execution Time (exec_time)
➢ Register Usage (reg_usage)
➢ Binary Size (obj_size)

Several quantity of interest are supported

79LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Overview

1.Motivation & Problem Statement
2.Record–Replay Concept
3.Recording & Replay Mechanics
4. Autotuning (Search Spaces & Derivation)
5.Advanced Tuning (Optuna)
6.Deployment with Proteus

80LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

How do you go from a single replay to autotune?

Instantiate Device
Memory Space

Initialize Memory

Compile and execute
code through Proteus

Compare device
memory with epilogue

81LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

How do you go from a single replay to autotune?

Instantiate Device
Memory Space

Initialize Memory

Compile and execute
code through Proteus

Compare device
memory with epilogue

Select configuration
parameters

82LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Mneme Autotuning Concepts

➢ Mneme users define search spaces that describe ranges of possible parameters
o e.g. 𝑃𝑎𝑟𝑎𝑚𝐵𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑥. 𝑟𝑎𝑛𝑔𝑒 ∈ 0.0, 1.0

➢ A user chosen Sampler selects parameter values

➢ Parameters must be derived to replay configuration points
o e.g.: 𝐵𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑥 = 𝑐𝑒𝑖𝑙 𝑃𝑎𝑟𝑎𝑚𝐵𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑥. 𝑣𝑎𝑙𝑢𝑒 ∗ 1024

➢ Configuration Points are submitted to a replay-executor
and the replay-executor returns a result

83LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Define a search space

Search Spaces get access to the recorded
configuration.1

The class needs to define a composition of
parameters as a space2

The class is required to override the
dimension() function.3

84LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

A user chosen Sampler selects parameter values

Selects a sampling strategy1

➢ ExhaustiveSampling
➢ OptunaSampingStrategy

o Parameterized by the study
“sampler”

o TPESampler
o NSGAIISampler
o ….

Iterate over samples2

➢ Internally we perform a call back
to SearchSpace.derived()
method

85LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Parameters must be derived to replay configuration
points

Deriving ExperimentConfigurations
 is extremely powerful1

Search Space

Parameter

Replay
Configuration Point

Deterministic parameter derivation
decouples the tuning parameter space
from the replay space

86LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Configuration Points are submitted to a replay-
executor and the replay-executor returns a result

87LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

A simple example with a weather simulation kernel

> cmake -B BUILD -S <mneme-repo>/examples/hecbench/ \
 -DCMAKE_C_COMPILER=$(mneme config cc) \
 -DCMAKE_CXX_COMPILER=$(mneme config cxx) \
 -DWITH_MNEME_EXAMPLE_HIP=On \
 -DCMAKE_PREFIX_PATH=$(mneme config cmakedir)
> cmake --build BUILD/

Configure & Build1

> mneme record --record-db-dir /var/tmp/wsm5-tutorial/ \
 -- ./wsm5/wsm5 1
Average kernel execution time: 598.550455 (ms)
Checksum: rain = 2.759990 snow = 2.759990

Wrap wsm5 execution with mneme2

Check generated artifacts3

> tree /var/tmp/wsm5-tutorial/
/var/tmp/wsm5-tutorial/
├── 2192356271952697806.json
├──DeviceState.epilogue.2192356271952697806.4809330650447
713119.mneme
├──
DeviceState.prologue.2192356271952697806.4809330650447713
119.mneme
└── RecordedIR_2192356271952697806.bc

Tune the kernel

> python ./wsm5/tune.py --record-db \
 /var/tmp/wsm5-tutorial/2192356271952697806.json\

--record-id 4809330650447713119
Average baseline time 557865817.1428572
...
...

Best config has specialize: True and specilize_dims: True
and set launch bounds: True shows speedup over base line:
1.6735922250391375 and total time: 333334374.28571427

4

88LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Let’s make the configuration space larger

89LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Let’s make the configuration space larger

Tune the kernel

> python ./wsm5/tune.py --record-db \
 /var/tmp/wsm5-tutorial/2192356271952697806.json\ --record-id 4809330650447713119
Average baseline time 557865817.1428572
...
...

Best config has optimization pipeline default<O1>, specialize: True and specilize_dims: False and
 set launch bounds: True shows speedup over base line : 1.9499789602050337 and total time: 285934005.8571428

No need to record or reconfigure the application, just increase the search space and execution time drops
from 333ms to 285ms

90LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Overview

1.Motivation & Problem Statement
2.Record–Replay Concept
3.Recording & Replay Mechanics
4.Autotuning (Search Spaces & Derivation)
5.Advanced Tuning (Optuna)
6.Deployment with Proteus

91LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Optuna & Continuous Search Spaces
Use miniFE as an example.

➢ Sparse MatVev is a:
o Grid-stride loop kernel
o Launch-agnostic kernel
o Execution-configuration

independent kernel
➢ How can someone tune:

➢ Launch Bounds
➢ Grid imensions
➢ Block Dimensions

92LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Optuna & Continuous Search Spaces
miniFE as an example. How do capture such “conditional” / “constraint” space

➢Generate a unit hypercube 0,1 𝑛

o Every dim in the hypercube represents the range of minimum to maximum valid values

93LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Optuna & Continuous Search Spaces
miniFE as an example. Derive fractions to concrete replay values

Compute number of threads by computing
maximum number of warps * fraction1

Compute the maximum number of blocks by
taking into account the number of threads2

Do the same for launch bounds. Launch
bounds need to be larger or equal to the
number of threads and smaller to 1024

3

Map the computed values to the derived
config4

94LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Optuna & Continuous Search Spaces
miniFE as an example. Use Optuna Studies to traverse the combinatorial space

Create an optuna study. Use any optuna
sampler (TPESample is the SOTA optuna

sampler)
1

Bind study to Mneme sampler and
 define number of samples2

Provide feedback to “optuna” study3

95LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Optuna & Continuous Search Spaces
miniFE as an example. Execute the tuner
➢Time to build miniFE:

o 10s clean build, 4 seconds modifying single source file

➢Time to execute miniFE:
o No Recording : 36 seconds
o With Recording: 38 seconds

▪ This cost is paid once

▪ Size the GPU snapshot and speed of IO define slowdown

➢Back-of-the-envelope calculation:
o To run 200 experiments and optimize a single kernel, we would need roughly:

1. Run MiniFE : 200 * (4 (compile-time) + 7 (number of experiments to reduce noise) * 36) = 51200 seconds = 0.004
observation/second

2. Use sub process + standalone replay tool: 38 + 200 * (7 seconds) = 1438 seconds = 0.13 observations/second

3. Use python mneme interface (single worker): 38 + 120 (seconds) = 158 seconds = 1.26 observations/second
SC-23

Mneme

96LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Asynchronous Execution With Multiple Workers

97LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Asynchronous Execution With Multiple Workers

Create the sampling strategy1

Invoke submit that returns a future2

Get results (blocking call)3

98LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Asynchronous Execution With Multiple Workers

> time python bezier-surface/tune.py --record-db \
<record-db>.json --record-id <dynamic-hash>
...
real 9m19.579s
user 9m43.129s
sys 8m22.552s

> time python bezier-surface/tune.py --record-db \
<record-db>.json --record-id <dynamic-hash>
...

real 2m30.036s
user 10m13.150s
sys 8m21.479s

99LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Overview

1.Motivation & Problem Statement
2.Record–Replay Concept
3.Recording & Replay Mechanics
4.Autotuning (Search Spaces & Derivation)
5.Advanced Tuning (Optuna)
6.Deployment with Proteus

100LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Serve Mneme configurations to Proteus

> ./bezier-surface/bezier-orig -f ../bezier- \
 surface/input/control.txt -n 8192
host execution time: 17372 ms
kernel execution time: 142 ms
PASS

> ./bezier-surface/bezier-proteus -f ../bezier- \
 surface/input/control.txt -n 8192
host execution time: 17289 ms
kernel execution time: 119 ms
PASS

Proteus Only (No Cache)

Proteus Only (With Cache)
> ./bezier-surface/bezier-proteus -f ../bezier- \
 surface/input/control.txt -n 8192
host execution time: 17296 ms
kernel execution time: 17 ms
PASS

> export PROTEUS_TUNED_KERNELS=bezier-tuned.json
> ./bezier-surface/bezier-proteus -f ../bezier- \
 surface/input/control.txt -n 8192
host execution time: 17260 ms
kernel execution time: 120 ms
PASS

Proteus + Mneme Tuning (No Cache)

Proteus + Mneme Tuning (With Cache)
> export PROTEUS_TUNED_KERNELS=bezier-tuned.json
> ./bezier-surface/bezier-proteus -f ../bezier- \
 surface/input/control.txt -n 8192
host execution time: 17407 ms
kernel execution time: 10 ms
PASS

101LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Summary of Covered Components

➢Described core concepts of Mneme
➢Build instructions
➢Basic Usage:

o Record
o Replay
o Tune

▪ Search Space
▪ Derive Configurations
▪ Evaluate Configurations

➢Advanced Concepts
o Composing with Optuna hyperparameter

search
o Multiple workers
o Asynchronous submission
o Running Mneme configurations in proteus

What did we cover Additional capabilities (beyond this tutorial)

➢Experiment persistency
o Check optuna storage + studies using

databases
➢Experiment Visualization

o pip install optuna-dashboard
o optuna-dashboard sqlite:///my_study.db

➢Multi Objective optimizations
➢Hierarchical Search spaces
➢Constraint experiments
➢Grounding experiments

102LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Olympus-HPC turns LLVM into an interactive optimization platform — not a one-shot compiler.

Olympus-HPC

Proteus

➢ Make the compiler Dynamic
o Empowered by LLVM
o Hybrid JIT (AoT prepares JIT)

➢ Specialize code using
runtime knowledge

o Arguments
o Shapes
o Configs

➢ Low overhead, cacheable,
incrementally intrusive to
existing codebases

Mneme

➢ Record & replay GPU kernels in
isolation

o Debug capability
o Autotuning
o Introspection of LLVM

optimizations
➢ Orders-of-magnitude faster

feedback loops
o Optuna empowered

Hyperparameter tuning
➢ Enables large-scale data

collection for ML-guided
optimization

Olympus-HPC

➢ Bridge compile time
runtime data

➢ Turn expensive end-to-end
experiments into fast inner
loops

➢ Enable practical ML-driven
optimization inside real
applications

➢ Enable deployment of auto
tuned kernels with no user
interaction

=

103LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

The Team

Giorgis
Georgakoudis (PI)

David
Beckingsale

Konstantinos
Parasyris

Tal Ben Nun

John Bowen

Thomas Stitt

Zane Fink Daniel Nichols

Tapasya Patki Loic Pottier

104LLNL-PRES-2015399

Secondary colors

Primary colors
Elemental

Navy
#001E62

Impact
(Lab) Blue
#0032a1

Energetic
Azure

#3366CC

Livermorium
Ice

#eaf0fb

Carbon
Gray

#a9aabc

Quantum
Slate

#6e6e7c

Innovation
Yellow

#fcb317

Research
Red

#9d0c0c

Performance
Pink

#b40f64

Algorithm
Orange
#ff7900

Solar
Yellow
#ffd900

Gamma
Green

#84c342

Extreme
Turquoise
#00a5b8

Inspiration
Indigo

#4b0082

Questions and Feedback

➢Reproduce the tutorial examples locally

➢Star the repos if you find them useful

➢Engage
oIssues
oQuestions
oContributions

➢… are more than welcome

	Default Section
	Slide 1: Proteus: Programmable JIT compilation for C/C++
	Slide 2: Proteus: programmable C/C++ for JIT compilation and optimization Mneme: advanced scalable autotuning using Proteus
	Slide 3: The Proteus Project
	Slide 4: We develop Proteus open-source
	Slide 5: What we do now to get high performance from our HPC software has limitations
	Slide 6: The Just-in-Time (JIT) compilation landscape: it’s hard for statically compiled languages
	Slide 7: Prior work is inspirational, but obsolete, non-portable, slow
	Slide 8: Workflow: developer uses the Proteus API, compiles, runs with JIT compilation and optimization enabled
	Slide 9: Proteus’ central optimization is runtime constant folding
	Slide 10: Proteus JIT optimization significantly reduces execution time with minimal overhead
	Slide 12: Overview
	Slide 13: The Code Annotation API is easy to apply to existing code
	Slide 14: The Code Annotation API is easy to apply to existing code
	Slide 15: The Code Annotation API is easy to apply to existing code
	Slide 16: The Code Annotation API is easy to apply to existing code
	Slide 17: The Code Annotation API is easy to apply to existing code
	Slide 18: The Code Annotation API can JIT-compile constant arrays
	Slide 19: The Code Annotation API converts dynamic shared memory to static
	Slide 20: Launch Bound, Dimension Specialization expose additional optimization opportunities
	Slide 21: The Annotation API applies to lambda functions
	Slide 22: The C++ Frontend is a portable RTC implementation that supports specialization
	Slide 23: C++ Frontend enables runtime template instantiation
	Slide 24: C++ Frontend is string templating engine agnostic
	Slide 25: The C++ frontend supports the full suite of specialization
	Slide 26: PJ-DSL constructs LLVM IR at runtime
	Slide 27: Kernels are added to JitModules with their name and signature
	Slide 28: PJ-DSL uses paired constructs for control structures
	Slide 29: Typed Var objects wrap LLVM scalar types
	Slide 30: PJ-DSL provides access to bult-in device functions
	Slide 31: Var objects support arithmetic, math operations
	Slide 32: PJ-DSL kernels are portable between GPU vendors
	Slide 33: PJ-DSL supports constant, variable arrays
	Slide 34: PJ-DSL function calls enable modular code
	Slide 35: Deferred code generation enables structural optimization in PJ-DSL
	Slide 36: Deferred code generation enables structural optimization in PJ-DSL
	Slide 37: JIT Frontends trade off supported specializations, developer ease, and compiler portability
	Slide 38: Overview
	Slide 39: Proteus is simple to build using CMake
	Slide 40: Installing Proteus with Spack is easy as 1, 2, 3!
	Slide 41: Installing Proteus with Spack is easy as 1, 2, 3!
	Slide 42: Installing Proteus with Spack is easy as 1, 2, 3!
	Slide 43: How to compile with Proteus enabled
	Slide 44: How to compile with Proteus enabled
	Slide 45: How to compile with Proteus enabled
	Slide 46: Overview
	Slide 47: Proteus uses hashing to uniquely identify specializations
	Slide 48: All JIT frontends use shared Proteus infrastructure
	Slide 49: Caching in a two-level hierarchy with a volatile in-memory cache and a persistent file-based cache
	Slide 50: Caching in a two-level hierarchy with a volatile in-memory cache and a persistent file-based cache
	Slide 51: Caching in a two-level hierarchy with a volatile in-memory cache and a persistent file-based cache
	Slide 52: Overview
	Slide 53: PJ-DSL has lowest JIT overhead, followed by Annotation and PJ-CPP
	Slide 54: Compilation time can substantially affect JIT speedup
	Slide 55: Summary of Covered Components
	Slide 56
	Slide 57: Overview
	Slide 58: Performance Optimization in a Nutshell The manual approach
	Slide 59: Performance Optimization in a Nutshell The manual approach
	Slide 60: Performance Optimization in a Nutshell The autotuning approach
	Slide 61: Performance Optimization in a Nutshell The autotuning approach
	Slide 62: Performance Optimization in a Nutshell The autotuning approach
	Slide 63: Performance Optimization in a Nutshell What happens when code is modified?
	Slide 64: Performance Optimization in a Nutshell The entire process starts from scratch
	Slide 65: How do you make autotuning practical? A multi-phase solution based on the concept of record replay
	Slide 66: Overview
	Slide 67: Record Replay can provide
	Slide 68: Mneme: Record–Replay for Scalable Optimization
	Slide 69: Overview
	Slide 70: High Level Of Execution Phases
	Slide 71: Build Mneme
	Slide 72: Create a “recordable executable”
	Slide 73: Record the execution of an application
	Slide 74: Record the execution of an application
	Slide 75: Replay a single Kernel
	Slide 76: Replay a single Kernel
	Slide 77: Replay a single Kernel
	Slide 78: Replay a single Kernel
	Slide 79: Overview
	Slide 80: How do you go from a single replay to autotune?
	Slide 81: How do you go from a single replay to autotune?
	Slide 82: Mneme Autotuning Concepts
	Slide 83: Define a search space
	Slide 84: A user chosen Sampler selects parameter values
	Slide 85: Parameters must be derived to replay configuration points
	Slide 86: Configuration Points are submitted to a replay-executor and the replay-executor returns a result
	Slide 87: A simple example with a weather simulation kernel
	Slide 88: Let’s make the configuration space larger
	Slide 89: Let’s make the configuration space larger
	Slide 90: Overview
	Slide 91: Optuna & Continuous Search Spaces Use miniFE as an example.
	Slide 92: Optuna & Continuous Search Spaces miniFE as an example. How do capture such “conditional” / “constraint” space
	Slide 93: Optuna & Continuous Search Spaces miniFE as an example. Derive fractions to concrete replay values
	Slide 94: Optuna & Continuous Search Spaces miniFE as an example. Use Optuna Studies to traverse the combinatorial space
	Slide 95: Optuna & Continuous Search Spaces miniFE as an example. Execute the tuner
	Slide 96: Asynchronous Execution With Multiple Workers
	Slide 97: Asynchronous Execution With Multiple Workers
	Slide 98: Asynchronous Execution With Multiple Workers
	Slide 99: Overview
	Slide 100: Serve Mneme configurations to Proteus
	Slide 101: Summary of Covered Components
	Slide 102: Olympus-HPC
	Slide 103: The Team
	Slide 104: Questions and Feedback

