. B

An End-to-End Workflow for Data-
Driven GPU Optimization with LLVM

LLVM @ CG0O26
Jan. 31512026

Konstantinos Parasyris
Center for Advanced Scientific Computing (CASC), LLNL

Lawrence Livermore v
@N ational La b atory LLNL-PRES-2015428 WMMA!,WSJ‘?é !

How Science Actually Advances (O

Make a change j\ \/\‘

Observe the
result

Analyze and learn

Progress comes from fast, controlled iteration and trustworthy observation.

Lawrence Livermore
National Laboratory ~ LLNL-PRES-2015428)

)

How Science Actually Advances

O

A \/\‘ Observe the

€ =

"4

Make a change

>

Analyze and learn

Reducing the complexity and time of this cycle is a strong indicator of continuous scientific progress

Lawrence Livermore
National Laboratory ~ LLNL-PRES-2015428 5

. B

How Science Actually Advances

(;> Challenges

> Data quality and representativeness

o Noisy, biased data, or detached from real workloads,
lead to non generalizable conclusions.

> Iteration cost

o Costly experiment taking hours because of:

= Compilation cost
= Fragile Scripts

o Limit our exploration capabilities

Make a change

=

Observe the
result

I:I

g

F——=—=—=—-—=—-—=—-=-=-=-=--

Analyze and learn

Lawrence Livermore
National Laboratory ~ LLNL-PRES-2015428 A

T

LLVM’s Strength — and Its Accessibility Problem

LLVM'’s Strength LLVM's Accessibility Problem

‘ / A Steep learhfhgrr ;

Rich observability
& optimization power

Rich observability & optimization power High barrier for non-compiler experts

Lawrence Livermore
National Laboratory ~ LLNL-PRES-2015428 5

Mneme is a tool providing a core

iInfrastructure to enable data driven research
on GPU LLVM research

EL eeeeeee Livermore
National Laboratory LLNL-PRES-2015428 6

. B

What is Record Replay?

Record Application >
Code Input — =
N\ e Code Data
kernel -
A
(]
S
=B INNSNANNRANN NN
C
o
"é
o 2oe,
w kernel =
S B
®
o
=l BT
o
< | o — |
kernel -
C
Lawrence Livermore

National Laboratory ~ LLNL-PRES-2015428 .

. B

What is Record Replay?

Record Application

|
(L

Code Input
i
N\ / Code Data
kernel -
A
()
£
R INNANANRANRNAN
C
o
":-‘s
(&) s
o 20,
i kernel -
S B
©
O
—Q_‘ IIIIIIIIIIIIIIIII
o
< -
kernel -
C
| EEEEROFES
Hl Lawrence Livermore
LLNL-PRES-2015428

National Laboratory

Replay kernels

1 I 1

Code Data Code Data Code Data

kernel
kernel kernel
C
 Cee s N 1 1 A
Skip due

to size

result per kernel

verification timing

What is Record Replay?

|
(L

Record Application
Code Input
N\ e Code Data
kernel ="
A
(]
£
R INNSANNANNNNNN
S
=
" kernel =" B
S B
S
:%
kernel =
C

B Lawrence Livermore

National Laboratory

LLNL-PRES-2015428

Replay kernels

1 I 1

Code Data Code Data Code Data

kernel
kernel kernel
C
 Cee s N 1 1 A
Skip due

to size

result per kernel
verification timing

Record Replay can provide

¢ Deterministic
Reproducible . Repeatable
e Comparable

¢ Production Data
et * Real Memory State
Application]
Inputs * No synthetic

Kernels
Record

Replay

¢ BuildIsolation
Decoupled

from e No Full rebuilds
i e Noapp-wide
autotuning

e Kernel Level

Isolated, self- Isolation
contained

execution e Sandboxed
Execution

Lawrence Livermore
National Laboratory LLNL-PRES-2015428

10

Mneme: Record-Replay for Scalable Optimization
and analysis

Lawrence Livermore
National Laboratory

¢ Real Memory State

¢ No synthetic
Kernels

® Deterministic
¢ Repeatable
e Comparable
/@\ /Q * Production Data

e Kernel Level
Isolation

e Sandboxed
Execution

* Build Isolation
* No Fullrebuilds
* No app-wide

E autotuning

LLNL-PRES-2015428

» Implements record-replay for GPU
» Decouples tuning from application dependencies

» Integrates with LLVM

o Python accessors to Functions, Blocks, Instructions etc.
= Similar to numba/llvmlite

o Proteus is the execution engine and applies optimizations

» Exposes replayed kernels to Python ecosystem

» Enables autotuning, analysis, and experimentation

11

. B

High Level Of Execution Phases

Build “Mneme”

e export LLVM_INSTALL_PATH=S{ROCM_PATH}
e pip install https://github.com/0Tympus-HPC/Mneme

Create a “recordable executable”

e Applyinstrumentation pass to the code

Record the execution of an application

e Checkthe generated artifacts

Replay a single Kernel

¢ Verify outputs
e Create your own autotuner

M Lawrence Livermore
National Laboratory ~ LLNL-PRES-2015428 1

. B

Create a “recordable executable”

(‘I) Include Mneme on build process (2) Configure & Build

> cat CMakeLists.txt > cmake -B BUILD -S SRC_PRJ \

. -DCMAKE_C_COMPILER=$(mneme config cc) \
find_package (HIP REQUIRED) -DCMAKE_CXX_COMPILER=$(mneme config cxx) \
find_package(mneme REQUIRED) -DCMAKE_PREFIX_PATH=$(mneme config cmakedir)
add_executable(tutorial .exe tutorial.hip) > cmake --build BUILD/

add_mneme(tutorial.exe)

é’. All kernel executions become observable and
\ interceptable

I
\é‘ The executable carries its own compiler IR

 What:

| > Kernel launches go through Proteus API

! » Vendor launch APIs are not invoked directly
' Why it matters:

| What:
! » Embedded LLVM IR
! Why it matters:

1
! recompilation

! > No need to recover IR from build system or
| source tree

1
I configurations etc.

: o These canbe “tunable parameters” at replay time
|

1

Y
M
>
Q
=2
)
w
o
o
7]
v
3
o
q
~+
@
3
o
=
o
<
@,
7))
o
=
o

Lawrence Livermore
National Laboratory ~ LLNL-PRES-2015428 13

.

Record the execution of an application

1 Wrap “recordable executable” execution
with mneme

> mneme record -rdb record-db-dir/ -vass X \
-- <recordable-executable> \
<arguments> Address Space

Managed by Mneme

(|HighAdress — LowAdress| = “vass”)

Trace of host-device Low Address High Address
events

device malloc

device malloc

) ® 6 HNu o
Launch Kernel “A” epilogue -

1) Store Mneme Memory to persistent storage (prologue)

1
1
1
1
1
1
1
1
1
1
: LLVM IR Code
1
1
1
1
1
2 |
\

Query proteus for LLVM IR of the kernel and store into storage @

)
)
3) Launch Kernel (synchronously)

4) Store Mneme Memory to persistent storage (epilogue)

Lawrence Livermore 14
National Laboratory LLNL-PRES-2015428

. B

Record the execution of an application

(1 Wrap “recordable executable” execution <2> Recording artifacts are stored under

with mneme “record-db-dir”

> mneme record -rdb record-db-dir/ -vass X \ > tree record-db-dir/
-- <recordable-executable> \ — <static-hash>.json
<arguments> — DeviceState.epilogue.<static-hash>.<dynamic-hash>.mneme

— DeviceState.prologue.<static-hash>.<dynamic-hash>.mneme
— RecordedIR_<static-hash>.bc

Lawrence Livermore
National Laboratory ~ LLNL-PRES-2015428 15

. B

Replay a single Kernel

<1> Replay a single kernel invocation

> mneme replay \
-rdb record-example-dir/<static-hash>.json \

-rid <dynamic-hash> “default<03>”
y LLVM IR Code o
epilogue [

Address Space

Managed by Mneme
(|[HighAdress — LowAdress| = “vass”) \
7\ Instantiate Device LowAddress ngh Address TR ——— -

> Memory Space

1
1
1
1
1
1
1
1
1
00 1
1
1
1
1
1
1
1
1
1

Trace of host-device events

T T T T e —

@ Compile and execute
code through Proteus

Compare device Automated
memory with epilogue verification

Lawrence Livermore
National Laboratory ~ LLNL-PRES-2015428 16

Initialize Memory

Replay a single Kernel

: : : Execution emits a key-value dictionary describing
1 Replay a single kernel invocation 2 : .
various metrics
> mheme r'ep]ay \ "Replay-config": { "Result": {
_ _ _ A3 2 o c "grid": { "preprocess_ir_time": 9.2298723757267e-06,
rqlb record_examp1e Eh r/<static Dash>.Json \ T e e i
-rid <dynamic-hash> “default<03> s 1, "codegen_time": 0.01226967596448958,

Lo | "obj_size": 4792,

. "exec_time": [

"block": { 840848,
"x": 256, 82561,
"y, 81761,
Nmta) 83360,

}, 76528

"shared_mem": 9, 1,

"specialize": false, "verified": true,

"set_launch_bounds": false, "executed"”: true,

"max_threads": null, "failed": false,

"min_blocks_per_sm": @, “start_time": "",

"specialize_dims": false, ‘end_time": "",

"passes": "default<03>", "gpu_id": 8,

"codegen_opt": 3, "const_mem_usage": -1,

"codegen_method": "serial", "local_mem_usage": 8,

"prune”: true, "reg_usage”: 12,

"internalize": true “error”: ""

} }
Lawrence Livermore

National Laboratory ~ LLNL-PRES-2015428 17

T

Replay a single Kernel

: : : Execution emits a key-value dictionary describin
(1) Replay a single kernel invocation <2> Y .y : &
various metrics
> mheme rep1ay \ "Replay-config": { "Result": {
_ _ o . . "grid": { "prep _ir_time": 9.2298723757267¢-06,
rdb record-example Eh r/<static Dash>.Json \ 0 soe0e. B e e
-rid <dynamic-hash> “default<03> e 1, "codegen_time" : 0.81226967596448958,
"z":1 1 "obj_size": 4792,
}or "exec_time": [
= "block” : { 84048,
! . po x": 256, 82561,
\é These parameters can be modified "y, 81761,
"z 1 83368,
_______________________________________ - ¥, ’ 76520
1 " ", I,
1 By forming valid configuration ranges of these - e e erified : true
| parameters one can search the space and tune the , e punen founde ¢ fetee e e
1 "min_blocks_per_sm": 8, "start_time": "",
. appllcatlon in respect to some quantity of interest | Py i A rend_time": **.
______________________________________ ; "passes": "default<03>", ‘gpu_id": @,
"codegen_opt": 3, "const_mem_usage": -1,
"codegen_method": "serial”, "local_mem_usage": 8,
"prune”: true, "reg_usage”: 12,
"internalize": true “error”: ""
} }

Lawrence Livermore
National Laboratory ~ LLNL-PRES-2015428 18

5

Replay a single Kernel

: : : Execution emits a key-value dictionary describing
1 Replay a single kernel invocation 2 various metrics
Iou |
> mneme replay \ "Replay-config": { "Result”: {
-rdb record-example-dir/<static-hash>.json \ T sease D botsasnonsasasanys e
-rid <dynamic-hash> “default<03> s 1, "codegen_time" : 8.01226967596448958,
"z":1 1 "obj_size": 4792,
}or "exec_time": [
"block” : { 84048,
! . x": 256, 82561,
\é These parameters can be modified "y, 81761,
"yt q 83360,
_______________________________________ . }, 76520
I ! _mem": @, I,
+ By forming valid configuration ranges of these ! ropovialize"; felae, verified": true,
' parameters one can search the space and tune the | etofpuneh bounds ¢ fatse, i i
1 "min_blocks_per_sm": @, "start_time": "",
| ' application in respect to some quantity of interest B B
______________________________________ - "passes": "default<03=", ‘gpu_id": @,
) "codegen_opt": 3, "const_mem_usage": -1,
~ . . "cod _ hod": " ial", "1 1_mem_ "8,
\é Several quantity of interest are supported ot etipiil ‘reg.usage’ : 12,
"internalize": true “error": ""
——————————————————————————————————————— 1 e)

> Execution Time (exec_time) :
» Register Usage (reg_usage) :
» Binary Size (obj_size) :

Lawrence Livermore
National Laboratory ~ LLNL-PRES-2015428 19

. B

How do you go from a single replay to a feedback
loop (autotune)?

& Instantiate Device
&’ Memory Space

G2 Initialize Memory

Compile and execute
code through Proteus

Compare device
memory with epilogue

Lawrence Livermore 5
National Laboratory ~ LLNL-PRES-2015428 0

. B

How do you go from a single replay to a feedback
loop (autotune)?

) Select configuration
parameters

% Initialize Memory

Compile and execute
code through Proteus

|

Compare device
memory with epilogue

Lawrence Livermore
National Laboratory ~ LLNL-PRES-2015428 o

. B

Execution With Multiple Workers

@ Create the sampling strategy
[SS = ExhaustiveSamplingStrategy(Spaceq

for i, config in enumerate(SS):
Invoke submit that returns a future if not config.is_valid():

continue
futures.append{(config,[executor.submit(config)))]

for i, (CT?fig, future) ij enumerate(futures):
.f:

val = [future.result()
@ Get results (blocking call)

Lawrence Livermore o9
National Laboratory LLNL-PRES-2015428

. B

Mneme is extremely efficient in performing the
feedback loop

%\E\O Traditional Benchmark-Centric Measurement)¢ This Breaks Data-Driven Optimization

\ > lteration cost measured in minutes
e Experiment throughput Repeated device

: memory initialization
I

1 » Exploration space collapses prematurely

1 ..
L> Decisions become sample-starved

» Full host + device compilation per
experiment

» Whole-application execution (fork/exec,
runtime overheads)

» Repeated device memory initialization

» Heavy I/0 and data marshaling

» Output validation via separate runs /
subprocesses

Data-driven approaches don’t need hundreds of samples —

they need thousands samples on 100s of benchmarks/kernels

Lawrence Livermore
National Laboratory ~ LLNL-PRES-2015428 03

. B

Mneme is extremely efficient in performing the
feedback loop

%\E\O Traditional Benchmark-Centric Measurement ‘ Mneme Approach \

i » Compile only the device code of the kernel !
! » Execute only the kernel under investigation ;
! » Single device memory initialization !
I > Minimall/O !
:
I
|
1

» Full host + device compilation per
experiment

» Whole-application execution (fork/exec,
runtime overheads)

» Repeated device memory initialization

» Heavy I/0 and data marshaling

» Output validation via separate runs /
subprocesses

|

I » User should use the robust python ecosystem for
: persistent storage
|
|

» Automated bit wise exact validation

Data-driven optimization is fundamentally throughput-limited

Lawrence Livermore
National Laboratory ~ LLNL-PRES-2015428 ”

.

Simple results on MiniFE
»Time to build miniFE:

o 10s clean build, 4 seconds modifying single source file

» Time to execute miniFE:

o No Recording : 36 seconds
o With Recording: 38 seconds

= This costis paid once
= Size the GPU snapshot and speed of IO define slowdown

» Back-of-the-envelope calculation:

o Torun 200 experiments and optimize a single kernel, we would need roughly:
1. Run MiniFE : 200 * (4 (compile-time) + 7 (number of experiments to reduce noise) * 36) = 51200 seconds
=0.004 observation/second

2. Use sub process + standalone replay tool: 38 + 200 * (7 seconds) = 1438 seconds =0.13 < SC-23
observations/second

3. Use python mneme interface (single worker): 38 + 120 (seconds) = 158 seconds = 1.26 «— Mneme
observations/second

Lawrence Livermore
National Laboratory ~ LLNL-PRES-2015428 -

. B

Conclusions

»LLVM enables deep GPU optimization — but experimentation cost limits
exploration
» Traditional benchmark-centric workflows are too slow for data-driven optimization
» Experiment throughput — not compiler capability — becomes the bottleneck

»Proteus makes LLVM JIT specialization practical

» Low-overhead, programmable LLVM JIT for device code
» Specialization and optimization close to the compiler pipeline

»Mneme enables scalable, data-driven GPU optimization
» Record-replay decouples kernels from full applications
» Orders-of-magnitude faster optimization feedback loops
» Python-driven autotuning and analysis at scale

High-throughput record-replay + LLVM JIT turns GPU optimization into a data-driven workflow

Lawrence Livermore 5
National Laboratory ~ LLNL-PRES-2015428 6

	Default Section
	Slide 1: An End-to-End Workflow for Data-Driven GPU Optimization with LLVM
	Slide 2: How Science Actually Advances
	Slide 3: How Science Actually Advances
	Slide 4: How Science Actually Advances
	Slide 5: LLVM’s Strength — and Its Accessibility Problem
	Slide 6
	Slide 7: What is Record Replay?
	Slide 8: What is Record Replay?
	Slide 9: What is Record Replay?
	Slide 10: Record Replay can provide
	Slide 11: Mneme: Record–Replay for Scalable Optimization and analysis
	Slide 12: High Level Of Execution Phases
	Slide 13: Create a “recordable executable”
	Slide 14: Record the execution of an application
	Slide 15: Record the execution of an application
	Slide 16: Replay a single Kernel
	Slide 17: Replay a single Kernel
	Slide 18: Replay a single Kernel
	Slide 19: Replay a single Kernel
	Slide 20: How do you go from a single replay to a feedback loop (autotune)?
	Slide 21: How do you go from a single replay to a feedback loop (autotune)?
	Slide 22: Execution With Multiple Workers
	Slide 23: Mneme is extremely efficient in performing the feedback loop
	Slide 24: Mneme is extremely efficient in performing the feedback loop
	Slide 25: Simple results on MiniFE
	Slide 26: Conclusions

